網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策
test-2021_Pansci_All_Top

0

0
0

文字

分享

0
0
0

從暈船到壞血病——長期待在船上的求生指南│環球科學札記 (4)

張之傑
・2020/12/09 ・1832字 ・閱讀時間約 3 分鐘 ・SR值 484 ・五年級

TAAi 2020 25th 人工智慧研討會

  • 文/張之傑

讀大學時曾參加救國團辦的海上戰鬥營,從基隆搭登陸艇出海。登陸艇是平底的,本來就容易搖晃,何況那天風浪相當大,只有極少數幾位沒暈船,絕大多數都被船上的水兵扶進船艙。即使躺在床舖上,仍不停地嘔吐,記得我連膽汁都吐出來了。

搭乘和平號作環球之旅的行前說明會上,旅行社的人說:船上有暈船藥,不過有青光眼的,和服用前列腺藥物的,要自備暈船藥。曾經搭乘豪華郵輪的幾位朋友要我不必擔心,他們從台灣到日本,九天行程一點兒搖晃的感覺都沒有。

和平號只是艘三萬五千噸的小型郵輪,我還是準備了幾種暈船藥以防萬一。感謝老天爺,一百多天行程從沒服用過。

test-2021_Pansci_All_inread_p4
圖:Pexels

為甚麼人會暈船?習慣就不會暈船了嗎?

不過確實有不少人暈船。每逢風浪大時,就會有些人躺在床上,不到餐廳用餐。人為什麼會暈船?這要從人體的平衡系統說起。

我們的耳朵是聽覺器官,也是平衡器官。內耳的前庭和平衡有關,它由三對半規管和橢圓囊、球狀囊構成。人體的運動主要有旋轉運動和平移運動。前庭的半規管可感知旋轉,橢圓囊和球形囊內的耳石可感知直線加速。

內耳構造示意圖。內耳是聽覺器官,也是平衡器官。彭範先繪

我們作旋轉或平移運動時,前庭發出信號給控制眼球運動的神經,使我們在移動時能夠擁有清晰的視覺;也發出信號給和肌肉相關的神經,使我們保持直立。當船舶晃動、顛簸得厲害時,有些人的平衡系統無法調適,因而產生暈眩的感覺。

然而,不容易暈船的人並非不會暈船。記得當年參加海上戰鬥營,海軍官兵就對我們說,風浪太大他們也會暈得嘔吐。可見暈船並非「習慣了」就能解決。導致暈眩的限度(暈閾值)個別差異很大,除了遺傳(體質)因素,也和精神、心理狀態有關。

test-2021_Pansci_All_inread_p8

一般來說,船愈大愈平穩,愈小愈容易顛簸。大航海時代,達伽馬、哥倫布、麥哲倫等的船都很小。以哥倫布的船隊來說,三艘船一共搭乘九十人,即使是旗艦聖瑪利亞號,估計不到一百噸。乘著小帆船遠渡重洋,顛簸晃動的程度可想而知。

帆船時代水手壞血病橫行,原來是因為沒有水果吃?!

帆船時代遠洋航海,水手除了得忍受暈船,更大的威脅是壞血病。由於水手容易罹患,所以又稱水手病。症狀是倦怠乏力,肌肉酸痛,牙齦、皮下等容易出血,嚴重時就會喪命。完成繞行地球一週創舉的麥哲倫,他的船員就有三分之二死於壞血病!

壞血病是因為缺乏維生素 C 而引起的,如連續一個月沒有攝取維生素 C 就可能罹患。維生素 C 存在於新鮮水果、蔬菜中,而古時沒有冷藏設備,遠洋航海水果和蔬菜無法長期保存,這是遠洋航海的水手容易罹患壞血病的原因。

醫學期刊 journal of Henry Walsh Mahon的船員壞血病圖繪,1841年2月,英國國家檔案館藏。
圖:wikipedia

維生素 C 和膠原蛋白的合成有關,膠原蛋白是結締組織的主要成份。正常人的血管壁細胞排列整齊,有結締組織填充其間。維生素 C 缺乏時,血管壁的嚴密性受到損害,只要稍加壓力,就會造成血管出血,這就是壞血病一名的由來。

test-2021_Pansci_All_inread_p12

十八世紀以前,人們對於壞血病一直束手無策。1753 年,英國海軍軍醫詹姆斯‧林德(James Lind)發現,壞血病發生在一般水手身上,幹部們卻沒有人罹患。難道當官的就不生病?細究之下,原來一般船員的伙食只有麵包與醃肉,而幹部們卻有馬鈴薯與高麗菜芽沙拉。

林德醫師認為,新鮮蔬果或許可以治療壞血病。後來他們遇到一艘載著橙子和檸檬的商船,林德醫師買了些橙子和檸檬,用來治療壞血病果然效果甚佳。

三度前往太平洋探險的庫克船長,也有同樣的發現,他把這方面的研究提交英國皇家學會,1776 年獲頒最高科學成就獎的科普利獎章。此後英國人將檸檬汁加入蘭姆酒內,供船員們飲用,壞血病的問題這才徹底解決。

庫克船長畫像,Nathaniel Dance-Holland繪,1775年,英國海事博物館藏。
英國的林德醫師和庫克船長,發現蔬果可以治療壞血病。圖:wikipedia

文章難易度

討論功能關閉中。

Ad manager Post Bottom code
[集雅]廣告測試
張之傑
14 篇文章 ・ 1 位粉絲
張之傑教授,科學史家,為中央研究院科學史委員會委員、中華科技史學會創始人;另研究科普學、辭書學、民間宗教、民間文學、西藏文學等。寫作小說及少兒讀物大多使用筆名(章杰),其餘大多使用真名。其科普作品以文筆流暢、條理清晰、富含人文精神著稱。
2021_Pansci_PC_sidebar_Top

0

0
0

文字

分享

0
0
0
電子耳如何重現聽力的世界?人工耳蝸的設計原理
Unmet Needs 臨床工程專欄
・2020/08/14 ・3575字 ・閱讀時間約 7 分鐘 ・SR值 547 ・八年級

TAAi 2020 25th 人工智慧研討會

電子耳就是人工耳蝸,屬於第三級醫療器材,那什麼樣的族群會需要人工耳蝸呢?它究竟彌補了我們耳朵缺失的哪一項功能呢?一個人造的儀器,可以重現聽損患者失去的世界?透過這篇文章,讓我們簡單的來了解人工耳蝸的基本設計。

  • 撰文:
    許逸翔|台大生資所碩士生
    詹喬智|獨立醫材研究員

  • 核稿:
    郭文瑞|國立陽明大學神經科學研究所 教授
    賴穎暉|國立陽明大學醫學工程研究所 助理教授
    (按筆畫順序排列)

人工耳蝸 — 透視圖。
圖/wikipedia

聽力損傷最常見的種類

蘇軾〈石鐘山記〉提到:「事不目見耳聞而臆斷其有焦,可乎?」我們在認識這個世界時,眼睛與耳朵幾乎是同等的重要。

根據今年 3 月的 WHO 報告指出,目前全世界有 4 億 6 千萬的人口屬於聽力損傷(disabling hearing loss)患者,而到了 2050 年,聽損人口的數字將來到 9 億,這代表什麼意思呢?代表你未來在生活週遭的人群中,每 10 個人裡就有 1 個人是重聽。

圖/pixabay

test-2021_Pansci_All_inread_p4

但是聽損的患者裡,只有極小的比例是屬於小耳症,也就是我們上一篇提到的骨導式助聽器的主要適用族群。

絕大多數的患者,都是屬於感音神經性聽損的範疇,這些人主要配戴氣導式助聽器(一般市面上常見的助聽器)即可。不過大家有沒有想過,重度的感音神經性聽損患者,也是配戴一般助聽器就好了嗎?答案可能跟你想的不一樣,也是我們今天要來討論的主題。

「感音神經性聽損」是什麼?

在談到我們今天的主角之前,我們先來簡單瞭解一下前述的感音神經性聽損是什麼?

造成聽損、聽障的原因有很多,長期處在噪音的環境下,或是經由疾病、藥物,甚到老化、基因遺傳……等等都有可能引發。如果從耳朵病變位置的角度切入,聽損可以分成傳導性聽損(Conductive hearing loss)、感音神經性聽損(Sensorineural Hearing Loss, SNHL)與混合型聽損(Mixed Hearing Loss)三個方向。[參考資料:1, 2, 3

test-2021_Pansci_All_inread_p8

聽損類別 — 依病變位置分成 3 類。
圖/轉載自原文章

其中,感音神經性聽損又佔最大的比例,成因是我們內耳裡耳蝸的毛細胞受損,或是我們的聽神經纖維功能異常,造成聲音從內耳傳遞至大腦的路徑受到影響。這樣的患者,病情如果輕微戴上傳統助聽器就可以了,而如果病情嚴重的話,就可能會需要用到我們今天文章想要討論的主題──人工耳蝸 (Cochlear Implant) ,才有辦法聽見聲音。

人工耳蝸怎麼運作?

人工耳蝸到底是什麼?這裡的「人工」是什麼意思?跟我們常聽到的人工皮、人工心臟、人工淚液的「人工」是一樣的嗎?── 其實是類似的,人工都是有一種輔助增強、或是取代我們身體原功能的意思。

人工耳蝸主要就是利用一條長長的電極,進到我們耳朵的最深處的──內耳,繞過毛細胞,施予電訊號直接刺激聽神經,來達到「幫助我們恢復聽力的目的」。

耳蝸內植入電極示意圖。圖嵌入自/Advanced Bionics

test-2021_Pansci_All_inread_p12

生物+工程,人工耳蝸的設計原理

人工耳蝸 (Cochlear Implant) 的設計與改良,有很大一部分取決於電極與耳蝸聽神經之間的刺激關係,想要來探討其中的奧秘,我們可以分別從「生物面」「工程面」的角度去切入。

1. 生物面:運用共振分辨頻率的「內耳」

我們人聽到聲音這件事,其實機制是極其複雜的。內耳如何去處理聲音裡複雜的頻率,扮演了很大的角色。試想,我們在一場音樂會裡,為什麼有辦法同時聽到不同的樂器,所發出的不同聲調的聲音呢?

簡單來說,內耳分辨頻率,是利用你我都耳熟能詳的「共振」原理。國中曾學到,一個物體的自然頻率如果與外力的頻率接近或一致,那物體便會不由自主的擺動起來,且擺動的幅度非常大。最著名的案例有 Tacoma 吊橋倒塌事件,風的頻率與吊橋的自然頻率很不巧的達到一致;還有英國步兵過橋時由於步伐太過一致,造成的吊橋倒塌事件

而平常外界的聲音從外耳傳到中耳、內耳時,我們的鐙骨(聲音在中耳的終點)會開始不斷敲擊耳蝸的卵圓窗(聲音在內耳的起點),並對耳蝸內的淋巴液產生擾動(行進波,Traveling Wave),從耳蝸的基部(Base)一路傳遞至耳蝸的頂部(Apex)。

然而,我們耳蝸不同部位的基底膜(Basilar membrane)對傳遞過來的行進波的反應都不太一樣,高頻的行進波,會引起耳蝸基部基底膜的共振;低頻的行進波,會引起耳蝸頂部基底膜的共振。由此一來,我們可以理解,不同頻率的聲音,會引起耳蝸不同的地方產生大幅度的振動,這些振動,會再帶動該部位的毛細胞擺動,進而刺激聽神經產生動作電位,傳遞至大腦。(更詳細機制可參考此影片

耳蝸內部基底膜對於不同音頻的共振關係。
圖/Jared E.〈Piezoelectric-Based, Self-Sustaining Artificial Cochlea〉

我們的耳蝸就是利用這樣的方式,對不同頻率的聲音進行拆解,再藉由聽神經將拆解後的訊號傳入大腦,使我們感受到了聲音的高低起伏。

耳蝸不同部位的基底膜對不同的聲音頻率產生共振。

2. 工程面:以電刺激器引發聽神經作用

我們理解大腦是如何透過耳蝸感知到這麼複雜的聲音後,就可以開始從工程面去思考如何設計人工耳蝸的植入電極了。首先,因為重度感音神經性患者的耳蝸毛細胞受損,基底膜共振的時候就不能帶動毛細胞擺動,引發該部位的聽神經產生動作電位。

所以我們就需要有一根長長的電刺激器取代毛細胞。它要能夠根據不同聲音的頻率,去刺激耳蝸不同部位的聽神經,另外它也要是柔軟的,能夠沿著耳蝸的螺旋形狀從基部一路延伸至頂部,而電刺激器上的電極陣列也是一個重點,電極數越高,代表越高的頻率解析度

電刺激器放大圖與在耳朵中的位置。
圖/Paweł R.〈From cochlear implants to brain-computer interfaces〉

3. 訊號接收器:以麥克風接收外在聲音轉成神經訊號

講完電刺激器後,難道就討論完人工耳蝸了嗎?其實還是不夠的,想讓重度感音神經性患者恢復聽力,人工耳蝸還需要其它物件。

除了電刺激器外,我們還需要一個訊號接收器(Receiver),它的作用除了要可以接收來自體表的訊號發射器所發出的無線電波外,還要擁有基底膜的功能,可以從無線電波解碼、分離出不同頻率的聲音訊息,之後再傳給電刺激器,進一步形成驅動電極的指令。

通常一個戴有人工耳蝸的聽損患者,耳朵後方還會安裝麥克風(Microphone)與語音處理器(Audio Processor)。麥克風就相當於人造的外耳,可以接收外界的聲音,並經由語音處理器的濾波後,無線傳遞至皮下的訊號接收器,最後形成前述提到的 ──能夠刺激聽神經的訊號。

圖人工耳蝸系統示意圖。
圖/Centre for Hearing

在醫療器材的背後,工程面與生物面的考慮

以上就是我們對人工耳蝸簡單的討論,我們希望讀者在閱讀完這篇文章後,可以瞭解人工耳蝸幾個重要的設計要點,與在人體中扮演的角色。

其實在設計每一項醫材時,工程面與生物面的考慮都是十分重要的,如何讓工程的裝置符合我們人體構造的需求,同時藉由儀器的刺激讓我們人體產生原有的知覺……等等,這些都是需要工程師與臨床人員不斷交流,細細去耕耘的。我們也希望可以藉由這篇文章,讓讀者瞭解一項醫材產品是如何因應臨床需求而去設計,並且需要哪些水平知識的連結。

補充:若正在閱讀文章的您正是電子耳使用者,或是您有認識配戴電子耳的親朋好友,歡迎加入陽明大學神研所有關電子耳的研究,一同為了更優質的聽知覺品質努力!詳情可以參考:連結

本文轉載自 Unmet Needs 臨床工程專欄《電子耳?人工耳蝸?助聽器的世界可能遠比你想像得還要複雜》。

Ad manager Post Bottom code
[集雅]廣告測試
Unmet Needs 臨床工程專欄
7 篇文章 ・ 0 位粉絲
「臨床工程專欄」希望從醫工的角度出發,與讀者分享醫材開發背後的巧思。藉由介紹醫材設計的觀點、開發醫材的經驗分享,與整理相關的知識資源,讓大家得知,醫材開發,有跡可循。

0

0
0

文字

分享

0
0
0
這條路走不通就換一條:「骨導式助聽器」的運作原理與設計思路
Unmet Needs 臨床工程專欄
・2020/04/09 ・2327字 ・閱讀時間約 4 分鐘 ・SR值 499 ・六年級

TAAi 2020 25th 人工智慧研討會

  • 作者/許逸翔

今天要來說說「骨導式助聽器」的故事。不知道各位有沒有聽過骨傳導耳機呢?只要將耳機表面貼近耳朵附近而不用塞進耳朵,就能聽見聲音?

這到底是真的還是假的?

告訴你,沒有錯!骨傳導耳機所運用的骨傳導技術 (Bone Conduction),其實原本是應用在一種稱為「骨導式助聽器」的醫療器材上,聲波的傳遞可以藉由我們顱骨的振動傳遞至內耳的耳蝸,再經由聽神經將訊號傳輸到大腦的聽覺中樞,使我們聽見聲音。

不過你可能會想,好端端的助聽器,為什麼偏偏要用骨導式的呢?這跟我平常聽到的助聽器不太一樣啊!助聽器不就是因為我們耳朵感受聲音的能力變低了,所以要放一個擴音器在耳朵裡,讓它把接收的聲音放大後再傳到耳膜嗎?你有沒有在唬我?

傳統助聽器。圖/rawpixel.com@Freepik

test-2021_Pansci_All_inread_p4

傳統助聽器的不足?

好啦沒有唬你,其實,傳統助聽器是屬於氣導式的。聲音經由外耳道的空氣傳到耳膜,引發振動產生聽覺,助聽器本身會放在外耳道的外側、中側或是內側,對聲音進行攔截,把它放大後再傳至耳膜。

然而,若病患的外耳道產生病症,或是中耳的聲音傳輸系統遭到破壞……等等,使得傳統的氣導式助聽器無法在正常的路徑上對聲音進行放大,那便會出現問題。

此時,我們便需要在其它聲音傳導的路徑上對聲音進行放大,才能協助病患聽清楚外界的聲音。

欸不過,聲音不就只是藉由空氣從耳道傳到耳膜,再傳到我們的大腦內嗎?

傳統的氣導式助聽器會對聲音進行攔截,把它放大後再傳至耳膜。圖/GIPHY

test-2021_Pansci_All_inread_p8

不!你有沒有發現,當我們摀住耳朵的時候,還是常常可以些微聽見外面的聲音?

其實,聲音不只可以經由耳道傳導,它也可以透過我們顱骨中顳骨的振動,將聲音傳遞至內耳的耳蝸,而這也是「骨導式助聽器」的重要原理。

骨導式助聽器的出現

根據三軍總醫院的衛教資料指出,骨導式助聽器通常是植入式的(與電子耳相似但並不相同),又稱  Bone Anchored Hearing Aids (BAHA),簡稱「巴哈」, 是一種藉由手術方式將傳音的鈦金屬植入頭顱骨內的一種骨傳導式助聽器裝置。

這樣的助聽器設計由於不會經過外耳道以及中耳耳膜、聽小骨等空氣傳導的構造,因此特別適合於中耳或外耳道閉鎖或中耳構造已經遭到破壞的病患使用。

test-2021_Pansci_All_inread_p12

骨導式助聽器的外觀。圖/Ear Associates

聽覺產生的原理

人體主要接收聲音的構造是「耳朵」,並在大腦皮質內產生聽覺。然而,各位是否覺得奇怪,聲音是以機械波的形式在介質中傳遞,大腦需要接收到神經電訊號才能產生聽覺。

機械波與電訊號之間,究竟是如何在我們神秘的聽覺系統裡做轉換呢?

簡單來說,關鍵是在我們內耳的「毛細胞」,人體的耳朵分成外耳、中耳和內耳,聲波(機械波)經由外耳的耳道傳入,作用於外耳與中耳之間的鼓膜,鼓膜產生相應的振動,並帶動中耳內的聽骨鏈,將振動傳遞至內耳。

聽覺系統的結構。圖/香港衛生署學生健康服務

內耳裡感受聲音刺激的部分稱為耳蝸,裡面充滿著淋巴液,而「毛細胞」便藏在這些淋巴液之中。

當聲音的振動經由中耳的聽骨鏈傳遞至內耳的耳蝸時,淋巴液會因振動而受到推擠,而毛細胞連帶受到擺動的同時,就會誘發連接毛細胞的神經末稍產生神經衝動(電訊號),這些電訊號一旦經由聽神經傳遞至大腦時,我們就能感受到聲音!

如果想要更詳細了解聽覺的詳細產生機制,可以看以下這支影片:

骨傳導耳機設計聯想是如何來的呢?

其實這樣的設計方式十分常見。原有的方法因為受其他的外力因素干擾,導致無法得到想要的結果,因此我們試著找尋是否有第二條、第三條路徑可以得到相同的結果。即使走過的路不同,花費的成本也不一樣,但只要能得到好的結果,便是個好方法。

就像我們平常在搭乘交通工具時,如果前面的路段有嚴重的塞車,那我們可能就會選擇搭乘捷運或是其他可以更加便捷到達目的地的交通工具。

而聲音的傳導也是,若主要的空氣傳導方式受到阻礙,那「骨傳導」也是一種替代方式,協助聽障者利用「骨導式助聽器」聽見外界的聲音。

骨導式耳機式意圖。圖/Wikipedia

這次會聊到「骨導式助聽器」的主題,主要也是想結合最近的時事。其實骨傳導耳機並沒有如噱頭般這麼神奇,它也是利用一種身體的傳聲方式,來達到聽覺產生的效果。

聲音原本就可以在固體、液體、氣體內傳遞,在耳朵亦是如此。

聲音的機械波最終會傳到我們耳朵深處的耳蝸,然而在過程中的傳遞方式並沒有受到任何規範,它能夠經由顳骨的震動傳入,也能夠通過外耳道的空氣震動傳入。

兩者最後只有主觀感受到的聲音清淅度、音量大小的差別。

「骨導式助聽器」因為其瞄準的客戶族群不同,在市場上仍佔有一定的比例。

也因為這項醫材的出現,使得慢性外耳炎、中耳炎、先天性外耳導狹窄或是閉鎖,甚至是單側耳聾的患者,能再度享受到聽覺為生活帶來的便利。

Ad manager Post Bottom code
[集雅]廣告測試
Unmet Needs 臨床工程專欄
7 篇文章 ・ 0 位粉絲
「臨床工程專欄」希望從醫工的角度出發,與讀者分享醫材開發背後的巧思。藉由介紹醫材設計的觀點、開發醫材的經驗分享,與整理相關的知識資源,讓大家得知,醫材開發,有跡可循。

0

0
0

文字

分享

0
0
0
讓黯然銷魂飯催淚的洋蔥,是治療耳疾的祖傳妙方嗎?
廖英凱
・2017/04/06 ・2681字 ・閱讀時間約 5 分鐘 ・SR值 575 ・九年級

TAAi 2020 25th 人工智慧研討會

是的,耳朵加了洋蔥。圖/《食神》影片截圖

近期,一則標榜把洋蔥芯放入耳朵一整夜,就可以緩解耳朵裡的任何炎症,減輕痛苦的神奇妙方,在某些社群傳了開來。這一個標榜自然通俗療法的敘述中指出「洋蔥中含有磷酸,有助於淨化血液、抵抗細菌感染……」而能保持耳朵健康、預防感染或幫助治癒感染。

然而,細究追溯這則訊息,雖有許多無稽之處,但也有一些有趣的古老經驗隱身其中……

test-2021_Pansci_All_inread_p4

你想過把洋蔥放進耳朵裡嗎?圖/By Hafiz Issadeen @ flickr, CC BY 2.0

所以我說,那個磷酸呢?

若說魔鬼藏在細節裡,那麼流言中最荒謬的錯誤,也往往出現在看起來最陌生的名詞身上。這個流言中標榜可以淨化血液抵抗細菌的磷酸,其實是一種肥料、洗滌劑、食品工業常見的無機酸,除了可用來生產製造酸性環境來達到消毒效果的產品以外1,事實上磷酸並沒有抗菌、消炎的功效。

若多考慮以磷酸為原料所製造的磷酸鹽類,這類物質更廣泛地應用在食品工業中,例如魚、肉類加工;讓蚵仔保水性變好更為肥美2。而在身體中,磷是組成細胞膜上磷脂質的重要元素;磷和鈣能組成磷酸鈣沉積在骨骼與牙齒中;更有調節神經傳導、荷爾蒙分泌等關鍵作用3,但仍沒有抗菌消炎的功效。

更有趣的部分,是洋蔥的成分中其實並沒有磷酸。退一步言,若概括考慮食物中的含磷物質,每一百公克洋蔥的含磷量約為 29mg 4, 5,其實在食物中的含磷量是相當低的。倘若含磷真的能有助於消炎殺菌,或許每一百公克含磷 715mg的干貝6,會是更強大的選擇(笑)。

test-2021_Pansci_All_inread_p8

莎草紙上的古埃及秘方

不過,把洋蔥當作耳疾用藥,倒也不是空穴來風的腦補流言。西元前 1550 年古埃及人所創作的埃伯斯紙草文稿(Eber papyrus)中,即記載了多種物質的醫療用途和療效。例如將洋蔥、大蒜、蜂蜜等材質作為傷口敷料;也可將洋蔥汁加熱後,可滴入耳朵內;在考古研究中,更發現一些木乃伊的耳朵裡有洋蔥7

連木乃伊都有發現洋蔥放在耳朵中。圖/By Paul Hudson @ flickr, CC BY 2.0

古埃及的經驗隨著歷史與文化的傳承到了三千年後的英國(這不是神鬼傳奇),1653 年,英國學者 Nicholas Culpeper,在他出版的 Complete Herbal 一書中,以系統化的資料庫方式,編目了數百種草藥特性與醫療方式。他在書中記述了將洋蔥汁滴入耳朵內,可減緩痛苦與噪音8。1986 年,一份刊載於耳鼻喉科期刊的研究中,更回顧了近兩世紀以來的文獻,發現洋蔥持續以草藥學和家庭偏方的型態,被人們視為耳疾的治療或舒緩方式9

千年傳統的全新研究成果?

如果洋蔥真的有神奇的療效,這相當可能代表洋蔥身上有著某一種或數種物質,剛好具有抗菌或抑制發炎的作用。而在近年生物化學與臨床實驗上,也能觀察到洋蔥萃取物對部分細菌與真菌,有顯著的生長抑制效果10, 11

test-2021_Pansci_All_inread_p12

分別分析洋蔥萃取物的成分,一種名為木犀草素(Luteolin)的物質,可能是洋蔥得以抑菌的原因之一。木犀草素是一種黃酮類化合物,富含於芹菜、香菜、花椰菜、洋蔥葉、胡蘿蔔、辣椒、蘋果皮、菊花等植物,可用於治療高血壓、發炎與癌症等疾病12

木犀草素(Luteolin)結構。圖/Wikimedia

另一個可能,是如洋蔥、大蒜、蔥、韭菜等蔥屬植物細胞中,含有大蒜素(Allicin)。近年來也有相當研究證實,大蒜素具有抑制細菌與真菌生長的效果13, 14。此外,當大蒜素從植物細胞釋出後,也會有部分分解為二烯丙基二硫(diallyl disulfide, DADS)這種具有良好抑菌效果的有機硫化物。也因此,確實有廠商正利用大蒜萃取物,來開發具有止痛療效的耳滴藥劑15, 16

大蒜素(Allicin)結構。圖/Wikimedia

「專業問題,專業解決」

雖然說,以洋蔥作為耳疾替代療法,並不是毫無根據的流言。洋蔥的部分成分,也被證實有抗菌消炎的效果。然而,這樣的替代療法或草藥滴劑,並不被主流醫學界所認可。

美國兒醫學會(AAP)和美國家醫學會(AAFP)在 2004 年的診療指引指出「基於有限和有爭議的數據,補充和替代醫學(CAM),並不推薦用於治療急性中耳炎(AOM)」17。美國耳鼻喉科學會(AAO-HNS)在 2011 年的臨床診療指引中,也指出「目前仍無充分證據,足以制定補充和替代醫學作為兒童中耳積水(OME)的診療方式」。

前衛生福利部部長林奏延醫師策畫的「華人育兒百科」也建議兩歲以下幼兒是中耳炎好發的年齡層,若發現幼童有耳朵痛等症狀,應由兒科醫師診斷。平時居家也可藉由維持乾淨、避免二手菸環境、施打肺炎鏈球菌與流感疫苗;以及哺餵母乳增加免疫力等方式,來降低罹病機率18

雖然說崇尚自然遵循古法也是一種堅持生活的浪漫(咦),但在把洋蔥(或大蒜、辣椒、蔥)塞進不太舒服的耳朵前……還是讓生病的歸醫院,食材的去鍋內吧。

參考資料:

  1. Phosphoric Acid“. En.Wikipedia.Org, 2017
  2. 川貝枇杷膏,.”肥美蚵仔加「磷酸鹽」有什麼問題? – Pansci 泛科學“. Pansci 泛科學, 2013
  3. 許庭禎,. “期刊 – 藥物食品安全週報 – 衛生福利部食品藥物管理署“. Fda.Gov.Tw, 2016
  4. USDA,. “Basic Report: 11282, Onions, Raw“. United States Department Of Agriculture Agricultural Research Service, 2016,
  5. 食品藥物管理署,. “食品營養成份資料庫 – 洋葱“. Consumer.Fda.Gov.Tw
  6. 食品藥物管理署,. “食品營養成份資料庫 – 干貝(加工)“. Consumer.Fda.Gov.Tw
  7. Pahor, Ahmes L. “Ear, nose and throat in ancient Egypt.” The Journal of Laryngology & Otology 106.08 (1992): 677-687.
  8. Culpeper, Nicholas. Culpeper’s Complete Herbal & English Physician. Applewood Books p.130.
  9. Brooks, Denzil N. “An onion in your ear.” Journal of laryngology and otology 100.9 (1986): 1043-1046.
  10. Elnima, E. I., et al. “The antimicrobial activity of garlic and onion extracts.” Die Pharmazie 38.11 (1983): 747-748.
  11. Kim, Jung-Haeng. “Anti-bacterial action of onion (Allium cepa L.) extracts against oral pathogenic bacteria.” The Journal of Nihon University School of Dentistry 39.3 (1997): 136-141.
  12. Lin, Yong, et al. “Luteolin, a flavonoid with potential for cancer prevention and therapy.” Current cancer drug targets 8.7 (2008): 634-646.
  13. Ankri, Serge, and David Mirelman. “Antimicrobial properties of allicin from garlic.” Microbes and infection 1.2 (1999): 125-129.
  14. Borlinghaus, Jan, et al. “Allicin: chemistry and biological properties.” Molecules 19.8 (2014): 12591-12618.
  15. ABOUT OTIKON – South Africa“. Otikon.Co.Za, 2017
  16. Sarrell, E. Michael, Avigdor Mandelberg, and Herman Avner Cohen. “Efficacy of naturopathic extracts in the management of ear pain associated with acute otitis media.” Archives of pediatrics & adolescent medicine 155.7 (2001): 796-799.
  17. Neff, Matthew J., American Academy of Pediatrics, and American Academy of Family Physicians. “AAP, AAFP release guideline on diagnosis and management of acute otitis media.” American family physician 69.11 (2004): 2713.
  18. 《華人育兒百科》林奏延:台灣要想辦法,把生兒育女變成一種崇高天職|人物觀點|2015-01-13|天下雜誌出版|天下雜誌“. 天下雜誌, 2017
Ad manager Post Bottom code
[集雅]廣告測試
廖英凱
27 篇文章 ・ 0 位粉絲
非典型的不務正業者,對資訊與真相有詭異的渴望與執著,夢想能做出鋼鐵人或心靈史學。