網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策
test-2021_Pansci_All_Top

0

0
0

文字

分享

0
0
0

在紛亂、窮苦的人間,三本書,讓克卜勒成為「星空的立法者」(下)

活躍星系核
・2020/11/08 ・2609字 ・閱讀時間約 5 分鐘 ・SR值 524 ・七年級

TAAi 2020 25th 人工智慧研討會

在上一篇中,我們看到克卜勒為哥白尼的日心說挺身而出,並透過《宇宙的秘密》、《新天文學》兩本書奠定了今日克卜勒第一、第二定律的基礎,接下來,我們即將進入克卜勒的另外一本重要著作:《世界的和諧》。

在發行《新天文學》後,克卜勒擁有全歐洲最精準的行星預測方法,他開始發行自己出版的預測年曆,當作一部分多出來的收入,他希望自己以後能夠不依靠國王的經費,隨心所欲的出書。

此時,是他天文研究的巔峰、人生的最低谷

同時,有鑑於《新天文學》中太多數學論證,不大容易讓學生理解預測行星的方法,克卜勒開始著手撰寫了天文教科書《哥白尼天文學概要》(Epitome Astronomiae Copernicanae),這本書將成為 17 世紀所有天文學家必讀的經典。

test-2021_Pansci_All_inread_p4
克卜勒的著作,《哥白尼天文學概要》。圖/wikipedia

克卜勒的天文研究雖然來到了巔峰時期,但他的現實生活並不順遂,第一任妻子和三個兒女的接續病逝,他所居住的地區也開始瀰漫著宗教紛爭,正一步步走向無法挽回的「三十年戰爭」。

1618 年初,克卜勒原本打算繼續撰寫第谷未完成的「魯道夫星表」,但心力憔悴的他希望從另一個新研究中尋找到心靈慰藉,於是他寫信告訴朋友:「我暫緩了魯道夫星表的工作,並且開始將我的心力投入在研究『和諧』」。

低潮中的慰藉,研究「和諧」與天體音樂

什麼是「和諧 (harmony)」?和諧的概念源自於人類觀察大自然的現象,發現大自然存在著某種特殊的數學比例。

在西元前 600 年,希臘數學家畢達哥拉斯發現,撥動特定比例的弦長能夠產生特定的音高,畢達哥拉斯也將音樂上的「和諧」推廣到行星運動上,行星和地球的距離每繞行一個周期都會伴隨著固定的比例變化,就像是行星擁有自己的旋律、特定的音階,這種想法被稱之為「天體音樂 (music of the spheres) 」。 

test-2021_Pansci_All_inread_p8

克卜勒希望將《宇宙的秘密》的幾何概念和《新天文學》的物理概念推廣到「天體音樂」的概念中。

克卜勒《世界的和諧》一書的內頁。圖/wikimedia

現在,讓我們回顧一下克卜勒前兩本重要著作,《宇宙的秘密》、《新天文學》。

在《宇宙的秘密》中,克卜勒認為「上帝是用幾何當作建材搭建宇宙」 ,如今他將自己的正多面體理論延伸結合「天體音樂」,試圖用五種正多面體當作基底來解釋各個行星的旋律。

在《新天文學》中,克卜勒寫出了單一行星:火星的橢圓軌跡,他了解到行星的離心率造就了行星忽快忽慢的現象,在經過幾年的套用後,克卜勒了解到每個行星的離心率都不相同。

test-2021_Pansci_All_inread_p12

此後,克卜勒開始著手繼續研究哥白尼概念中提到的「準則」:行星週期和行星跟太陽距離的關係。

《世界的和諧》:週期定律的現世

克卜勒和畢達哥拉斯不同,他對於數值特殊的比例不感興趣,他想要知道的是週期和平均距離精確的數學關係,在他擁有六個行星的完整軌跡的情況下,克卜勒能夠將所有資料攤在一起,花點時間和心思仔細查看它們之間的關聯性。

1618 年的 5 月,克卜勒找到了他渴求的數學關係式:週期平方和行星半長軸的三次方成正比關係,這就是克卜勒的第三定律「週期定律」,是牛頓寫出萬有引力定律的基礎之一。

週期定律中,克卜勒認為「行星週期的平方」與「行星軌道半長軸 (a) 的立方」成正比。圖/wikipedia

1619年,克卜勒出版了《世界的和諧》,結束了他長達 20 幾年的解密日心說的旅程,此時,克卜勒再也都止不住他的狂喜了,他在《世界的和諧》中的最後一章寫下:

「我已經擲下了骰子,也寫好了書,不管你是同輩還是前輩,這並不重要。既然上帝等待了祂的研究者足足六千年,我大可等待一百年後的讀者。」

1627 年,克卜勒出版了「魯道夫星表」,結合了第谷的完整觀測資料加上克卜勒的預測模型,成了當時資料最完整最精準的星表。

科學史上第一位「天文物理學家」

在一個世紀後,牛頓運用自己獨創的萬有引力和微積分,重新證明了克卜勒三大定律,利用漂亮的數學工具解釋了克卜勒多年來的努力,問到克卜勒的成就,牛頓只簡單的評論:「他(克卜勒)當然是用「猜」的,他知道軌跡非圓是卵形,於是他就猜會是橢圓。」

或許我們不該懷疑克卜勒是否猜出橢圓,而是要詢問為何只有克卜勒能夠發現橢圓?

因為他是第一個將「物理」導入天文學的天文學家,他不聽信老師馬斯特林 (Maestlin)「不該把物理學引入天文學」的勸言,堅持使用具有物理意義的「距離規則」來思考天文,有了根據行星運動建立的基礎物理定義,儘管克卜勒當時只有幾何工具,透過誤差分析不斷的改進預測模型,克卜勒會發現橢圓也是遲早的事情。

克卜勒一生堅信自己的天文物理觀,從始至終都不知道自己已經悄悄地成為科學史上第一位「天文物理學家」。

註解

此觀點出自於 Owen Jay Gingerich 的《Johannes Kepler and the New Astronomy》中,他在內文提到:如果克卜勒能從 20 世紀的字稱呼自己,我猜他會希望稱做自己為宇宙學家,但我會傾向我們能尊稱他為「第一個天文物理學家」。

參考資料

  1. Aiton, E.J. (1969). Kepler’s second Law of Planetary Motion. Isis A Journal of the History of Science Society, 60, 75-90.
  2. Wilson, C. (1968). Kepler’s derivation of the elliptical path. Isis A Journal of the History of Science Society, 59, 5-25
  3. Gingerich, O. (1972). Johannes Kepler and the New Astronomy. Quarterly Journal of the Royal Astronomical Society, 13, 346-373
  4. James, R.V. (1999). Johannes Kepler and the New Astronomy. New York:Oxford University Press
  5. 姚珩、黃瑞秋 (2003)。克卜勒行星橢圓定律的初始內涵。科學教育月刊,第 256 期, 第 33-45 頁。
  6. 姚珩 (2004)。行星面積定律的建立。科學教育月刊,第 257 期,第 32-38 頁。
  7. International LaRouche Youth Movement. (2006). Presentation of Kepler’s Astronomia Nova.
  8. 維基百科:Rudolphine TablesHarmonices MundiJohannes KeplerMusica universalis

作者資訊

  • 仰望天空的智人

目前為高三自學生,在升上高三的那個暑假,毅然決 然走上自學的道路。希望在有限的青春,不要只是僅追求紙上的對錯,而是時時刻刻的詢問世界,「為什麼?」。

文章難易度
Ad manager Post Bottom code
[集雅]廣告測試
活躍星系核
818 篇文章 ・ 1 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia
2021_Pansci_PC_sidebar_Top

0

0
0

文字

分享

0
0
0
旅居太空的必要研究:如何在太空中做愛和繁衍後代?
Rock Sun
・2020/11/16 ・5800字 ・閱讀時間約 12 分鐘

TAAi 2020 25th 人工智慧研討會

y編按:A片中的迷思數不勝數,但也有各種腦洞大開的新奇點子。比如說,你想過在太空中怎麼做愛嗎?這不是胡思亂想,而是至關重要,尤其當人類準備要飛往前人未至的星際邊疆的此刻。

看A片學性教育是否搞錯了什麼?》專題邀你一起聊色長姿勢,讓我們一起上到外太空,想想怎麼孕育生命在內子宮?也歡迎偷偷私訊跟我們分享你的各種腦洞喔!

數十年來,人類前往月球、發射了國際太空站、在火星上登陸探測器,不斷地刷新在宇宙中停留的時間。

如果要給星際探索一個高大上的理由,那大概是如何將人類的足跡拓展到宇宙,建立一個吉翁公國人類可以居住的殖民地。

但仔細想一下,建立殖民地需要什麼呢?直覺上想到的就是「食衣住行育樂」:目前,我們有研究各種栽種方式、新型的保存方法;太空衣的科技也持續革新,越來適合活動;太空船、建築物有各種適居設計;火箭技術也日漸成熟⋯⋯其實好像都有在準備呀?

等等⋯⋯人要殖民,就需要繁衍後代,持續的在異地延續基因。至少保持人口不要負成長,不然就只是「派一群人送死」!

說到繁衍後代,就要討論不少令人害羞的事了,隨著太空旅遊即將成真,只要有錢就能藉著私人企業的幫助上太空,想在太空中做害羞的事不再遙不可及,而太空競賽也因此多了兩個未達成的成就:「在太空中自然受孕」和「第一個在太空中出生的嬰兒」。

test-2021_Pansci_All_inread_p4

沒有這些成就,人類就無法完成永久在外太空定居的願景,但我們好像不常聽到相關新聞⋯⋯所以我們有所準備嗎?

太空人有「做」過嗎?還是只是我們不知道

男女太空人難道不會一時意亂情迷,在太空中曾經做過那檔事,然後我們都不知道嗎?這其實是兩大太空單位NASA和俄羅斯太空總署 Roscosmosc 很常被問到的問題,也是外出演講的太空人很常遇到的疑問之一,先講結論:

沒有,你可以有很多陰謀論,但是統一說法就是:「沒有」。

Roscosmos 在2011年就有發布過聲明反駁過這個理論,聲稱不管在蘇聯時期還是俄羅斯太空任務中,從來沒有太空人進行過性行為。(註1)

至於 NASA,在太空人的條款中對於組員之間的關係規範基本上以「組員間保持信賴關係」和「維持專業」為主軸,而且絕大多數的太空人都邁向中年、有自己的家室,此外,要在人不多、空間密閉的太空中亂搞還不被發現,其實非常非常困難。

test-2021_Pansci_All_inread_p8

筆者為了確認這件事,還寫了 一封 email 給我在美國熟悉相關領域、認識太空人的前輩,幫我輾轉交給了2004~2005年國際太空站的指揮官焦立中博士 Leroy Chiao回答,針對「是否有組員在太空中進行過性行為?」和「是否有相關實驗要求太空人進行?」這兩個問題,答案都是大大的NO。

都還是幻想而已喔。圖/Shutterstock

焦立中博士也在之前的訪談中曾經寫到:「我並不清楚 NASA 有沒有針對這件事發表正式宣言,當我們同意成為太空人時這件事根本沒有討論的餘地,因為大家都心知肚明答案是什麼。」

「男人終究是男人,如果發生了很難不去宣揚。而且如果哪一天在太空站上發生這種事情,其他人很難不會知道,或是說⋯⋯當這種事發生時我們都會知道。」太空人也都支持焦立中博士的說法,表示說每天的任務不會有時間給你羅曼蒂克的。

再繼續追問下去也沒有用,我們就承認過往太空人並沒有在太空中進行過性行為或相關實驗,但這不代表未來不會出現,讓我們超前佈署,向未來規劃吧!

在太空中做愛做的事很難嗎?你還得先問過牛頓

以前沒有沒關係,但當我們談到太空旅遊、遠行或殖民時,就必須要面對幾個大問題,像是「人類該如何在太空中進行性行為」、「人類有辦法在太空中受精嗎」、「人類該如何在太空中進行分娩」、「之後的育兒行為怎麼辦」⋯⋯等。

test-2021_Pansci_All_inread_p12

你或許可以在太空站內關6個月,但一趟火星長期任務可是以年為單位起跳的。不管你是為了科學研究需要大膽嘗試,還是不小心鬧出人命,我們都要有所準備,更別提定居月球之類的理想,與其當理想變為現實,才在苦惱不能做,不如現在就來研究怎麼做吧!

先說大家最關心的性行為好了,會有什麼「體位怎麼做啊」、「動作怎麼辦」之類的問題。

一樣先講結論,會比地球上還要麻煩很多,麻煩到你可能不會想做了!

如果你有親密伴侶可以討論會更好,沒有的話請自行想像。圖/Nasa

因為你得先問問牛頓⋯⋯不是說真的去問牛頓物理,而是要考慮「重力」。在地球上,我們能夠肌膚相親、彼此抱在一起或是做愛時變換不同姿勢,或多或少都需要重力幫忙。而大家應該也看過太空人在無重力中生活的影片吧?在無重力狀態下,舉凡睡覺、換衣服、吃飯、跑步運動都需要很多的支撐和固定,可想而知,兩個人之間要緊密的激烈互動,將會需要更多的協助。

而且,作用和反作用力也需要考慮,不管是哪種體位,一次動作結束有非常大的機率會使兩人分開,除非有設計良好,又不會妨礙兩人動作的「性行為輔助裝置」幫忙固定,例如把其中一人固定住之類的,但這又像是什麼特別的 play?

不管怎樣,「性行為輔助裝置」會是一個非常偉大且厲害的發明,不然你也可以請另一位好友從旁協助,就像A片裡面會看到的那樣⋯⋯總覺得好像更怪了。

另外,還有太空中的身體狀況需要考慮,這裡說的不是疾病,而是大部分人都無法避免的太空中身體變化,例如動暈症、骨質流失、視覺味覺變異⋯⋯等。其中和性愛最直接相關的,就是「血液」。在太空或低重力中,血液無法順利地流動,導致許多太空人會有頭暈、血液循環的問題,而男生陰莖需要充血才能正常勃起,至於女生,性行為過程中陰道壁也會充血,在無重力上都可能會發生困難,更不用說之後受精卵著床後的養分供應了。

另外在太空中液體因為沒有重力的影響,如果附著在身體上的話並不會滴下來,反而會累積在皮膚上,最普遍的問題就是如果流汗越流越多,如果沒有處理掉的話,會在皮膚上形成一層濕濕的汗液層,這不只讓親密活動因身體濕滑難以進行,也會讓性愛很不舒服。其次,別忘了精液和女性潮吹的液體,都因為沒有重力而不會輕易離開你的身邊,如果沒有萬全準備在太空上做起來,一定是一團亂。

總而言之,人類的性愛方式是針對地球重力設計的,在太空中很難行得通。

太空人在太空站中跑步,都需要這些裝備了。圖/National Air and Space Museum

才剛起步的人類宇宙性愛計畫,我們有什麼進展呢?

看起來,距離人類能順利的在宇宙中進行肉體歡愉,還有很多研究需要補完,那目前有什麼進展呢?

其實有很多人,尤其是非太空專業人士,對這件事有無比的熱誠。其中最有名的事件,當屬陪伴全球無數孤單人、維護世界和平、以橘黃色LOGO為象徵的「P開頭網站」所發起的企劃。

在2015年P網發起了一個史無前例的募資,製作世界第一個太空性愛影片,這個耗資340萬元的計畫希望能把兩位他們挑選的影星送上太空,並拍攝一支A片。看起來很有趣對吧?但這個募資目前只達到 6%,而且,不管是在模擬無重力還是真的在宇宙中做愛,我們都還準備的不夠,安全為重。

可以去朝聖,但是想掏錢請三思再三思。圖/MIC

還有像維珍銀河企業(Virgin Galactic)還曾收到來自未知單位的提案,提供100萬美元拜託他們協助製作一部長達1小時的太空性愛影片,但最後維珍拒絕了!可能還是因為風險考量。

其實現在各大太空研究機構,不管公家還是私人,都會有人上門詢問太空性愛的相關問題,尤其是媒體對這件事特別有興趣,誰不會對「在奇異的環境打炮」這個話題感興趣呢?

而且偷偷講一個筆者理出來的關鍵問題,不管怎樣,我們可能都需要先在人工產生的零重力中實驗一下,但是現在搭乘飛機體驗零重力一趟長度約為8分鐘,而且分階段進行,每一階段30秒!各位男士,你的時間夠嗎?

先暫停大膽的想法,來講一些正經的研究

科學要處理人類在太空中生殖、繁衍的問題,不會直接從人體實驗和體內受精著手,而是從如何在太空中體外人工授精開始研究。

2018年4月,NASA 進行了一個非常重要的實驗稱為Micro-11,這個計畫首次將人類和公牛的精子送上國際太空站進行實驗,看在無重力空間中精子的活動有沒有改變,公牛的精子因為行為模式較為固定,所以做為這個實驗的對照組,而人類的精子本來就有較多運動模式,所以更難預測。

太空人進行完實驗、觀測之後,還要將精子送回地球,看有沒有辦法跟卵子做結合,才有辦法下初步結論,因此目前尚未有定論。不過更早的研究顯示,牛和海膽的精子在太空中都適應良好,牛的精子在無重力下的游速較快,這通常代表繁殖力更強,而在海膽精子上,驅動精子游動的化學物質在無重力中也更快啟動。

公牛的精子。圖/Animal & Daily Science

然而想要成功受孕,光有精子是不夠的。之前NASA曾在太空梭任務中進行過得母鼠實驗顯示,微重力會使小鼠卵巢延遲釋放成熟的卵細胞,目前仍在進行的實驗是要確認這個現象是否為長期效應,如果答案是肯定,那麼這將會是另一個要克服難題。

並且,「輻射」會妨礙精子和卵子的形成,也會造成突變而傷害胎兒。而在太空中,來自太陽的高能量宇宙射線和帶電粒子非常多,就算在國際太空站,上面的輻射量也比地表強10倍左右!更別說在其他宇宙空間(例如月球、火星),上面的輻射量又是好幾倍起跳,我們需要能防禦輻射的太空殖民地,或是發明有助於修復受損DNA的藥物,才有辦法在太空中安胎。

就算我們克服了這些障礙,在人類長期的太空旅行和宇宙殖民計畫中,還得確保有足夠人口和健康的基因庫,曾經有虛擬計畫模擬如果要經過6300年的太空旅行後到達比鄰星B,我們至少需要98人才能避免近親交配,保有足夠健康的基因,再考慮上個人狀況、災害、潛在風險,可能要上百人才能完成一趟太空移民!

此外,除了身理上的問題需要解決,還有心理狀態也要考慮。如果兩位太空人伴侶有了感情摩擦怎麼辦? 太空旅行就哪幾個人而已,空間又只有這麼大,如何維持健康心態就顯得非常重要。

你能想像分手了還要在密閉空間裡看著他/她6個月嗎?圖/IMDb

更麻煩的倫理和政治問題要進來嘍!

以上提到的物理、化學、生物、心理問題,其實在精準長期的研究開發之後,都還是有望解決的。

以目前的步調,太空中人類體外受精的實驗可能需要4~5年的研究,如果2年內開始招募正式的實驗者並開始訓練,然後在男性女性還保有生殖能力下進行任務(也就是說不能太老),這個「太空中人類性行為」的研究估計可以在10~15年間完成。

雖然研究執行上不會遇到困難,但在政治跟倫理層面,這些研究還需要另一群專業人士,長期跟大眾進行溝通才能克服。目前國家級太空機構要處理「宇宙中繁衍後代」的相關問題,研究執行的難度並不高,但在政治上會變得相當棘手。

你想想,把你上繳國庫的稅金,拿去讓太空人用於「繁殖人類的科學實驗」,你能接受嗎?

而倫理方面,宇宙勢必是一個短期內非常壓抑、充滿未知風險的地方,人類社會在這種高壓狀況下,必定會形成異於地球的社會組織與文化,在這種環境下出生的小孩會快樂嗎?

除了可能面臨的生理和文化挑戰,也可能因為設想不夠周全,造成初期嬰兒潛在死亡率較高,而這些小孩在不同重力下發育的差異,也需要更多實際案例,才能適應或化解。

以上問題很難在短時間內解決,也很難由國家機構著手,這又是私人研究企業的機會了,雖然它們不會被質疑浪費公帑,但潛在的相關問題還是存在。

現在知道在外太空做愛,是一個多麼深遠、偉大又麻煩的計畫了吧!但我也跟大家一樣在期待可以看到宇宙A片的那天,當然,這一切都是為了科學研究!(被打)

註解

  1. 筆者蒐集資料的過程中,在知名成人影片網站有找到英文標題為「俄羅斯太空人太空性交實驗」的影片,而且真的是在無重力中和帶有有點古老的畫質……先對不起我發文不附連結,但考慮到假影片、黑歷史、模擬、或是單純的官方不願承認等各種面相,我建議大家還是先當作太空人做愛這件事還沒發生、大家從零開始吧

資料來源:

Ad manager Post Bottom code
[集雅]廣告測試
Rock Sun
56 篇文章 ・ 3 位粉絲
前泛科學的實習編輯,曾經就讀環境工程系,勉強說專長是啥大概是水汙染領域,但我現在會說沒有專長(笑)。也對太空科學和科普教育有很大的興趣,陰陽錯差下在泛科學越寫越多空想科學類的文章。多次在思考自己到底喜歡什麼,最後回到了原點:我喜歡科學,喜歡科學帶給人們的驚喜和歡樂。 "我們只想盡我們所能找出答案,勤奮、細心、且有條理,那就是科學精神。 不只有穿實驗室外袍的人能玩科學,只要是想用心了解這個世界的人,都能玩科學" - 流言終結者

0

0
0

文字

分享

0
0
0
在紛亂、窮苦的人間,三本書,讓克卜勒成為「星空的立法者」(上)
活躍星系核
・2020/11/06 ・3967字 ・閱讀時間約 8 分鐘 ・SR值 498 ・六年級

TAAi 2020 25th 人工智慧研討會

  • 作者/仰望天空的智人|目前為高三自學生,在升上高三的那個暑假,毅然決 然走上自學的道路。希望在有限的青春,不要只是僅追求紙上的對錯,而是時時刻刻的詢問世界,「為什麼?」。

從三本著作了解克卜勒的天文物理觀

在歷史長河中,天文學家們提出了各種五花八門的理論,嘗試理解天上六顆讓人捉摸不定的行星,但唯有一個人的理論能夠毫無誤差1的精準預測,時至今日仍舊屹立不搖,他的名字是——約翰尼斯.克卜勒 (Johannes Kepler) 。

克卜勒是第谷.布拉赫 (Tycho Brahe) 的得意助手,生前時,他鼓舞了同時代的伽利略公布真相,在死後,也啟發一百年後的牛頓建立了牛頓三大運動定律。

而克卜勒一生的天文成就被萃取成了「克卜勒三大定律」,最終被寫入到了現今的物理課本中。

test-2021_Pansci_All_inread_p4
克卜勒肖像。圖/Wikimedia common

克卜勒一生發表了許多影響後世的劃時代著作,涵蓋數學、天文、光學,現在,請讓我們將視野聚焦在三本克卜勒的天文鉅作:《宇宙的秘密》、《新天文學》、《世界的和諧》,分別象徵著,開始、轉折、結束,仔細端詳三個不同時期的克卜勒,如何逐漸完整他的「天文物理觀」。

《宇宙的秘密》最早公開支持哥白尼理論的書籍之一

原先主張地心說的托勒密認為:行星是繞行地球在固定的球殼上一層又一層,如同洋蔥一般,自從古希臘後裔托勒密完成他的《天文學大成》開始, 一千多年以來,地心說一直都是西方天文學的主宰。

而 16 世紀時,主張日心說的哥白尼認為行星其實是繞行太陽,所有行星都和太陽冥冥之中都遵守著一個「通則」,且每個行星都和太陽保持著特定的比例關係。

在《天體運行論》的日心說模型中,哥白尼認為太陽是宇宙的中心,地球與其他行星一起繞著太陽轉。圖/De revolutionibus orbium coelestium 。

1595 年,身為講師的克卜勒,在授課的時候畫出了正三角形鑲嵌在圓形裡的示意圖,他突然靈光一閃,如果他在正三角形裡面又多鑲嵌一個小圓,這樣兩個圓就會有了比例的關係了!這不就像是哥白尼概念中提到的「每個行星和太陽都有特定的比例關係」嗎?

test-2021_Pansci_All_inread_p8

當時,哥白尼沒有解釋每個行星保持特定比例的原因,但現在克卜勒隱約領悟並認為「上帝是用幾何創造宇宙的」。

因此克卜勒開始展開了自己的調查,但他發現在二維平面上是行不通的,他又問了自己一次:「為何上帝只創造了水星、金星、地球、火星、木星、土星,這六顆行星?」

他聯想到了三維空間中的正多面體只有五種,克卜勒高興極了,他認為上帝是用「幾何」當作建材,並藉此來聯繫各個行星。

克卜勒的正多面體宇宙模型,克卜勒認為有 5 個正多面體可以被裝進一個大球體之中,並對應於當時已知的 6 個行星。圖/Wikimedia common

到了 1597 年,克卜勒發表《宇宙的秘密》(Mysterium Cosmographicum),這是克卜勒的第一本天文作品,同時也是歷史上第一本公開認同哥白尼理論的書籍,他迫不及待把自己發現的宇宙秘密隨機寄給其他天文學家,想要了解真正的專家將會如何看待自己引以為傲的觀點。

test-2021_Pansci_All_inread_p12

堪比古代交友軟體,一本書牽起了三人緣分

其中一本《宇宙的秘密》輾轉來到了義大利,到了一位還不有名的數學教授手中,這位數學教授告訴克卜勒:「我已經身為哥白尼的信徒很久了,私下也收集了一些能夠證明地球運動的物理現象唷!」克卜勒被他像是「回音」的名字逗樂,而這位數學教授的名字是——伽利略.伽利萊 (Galileo Galilei) 。

克卜勒鼓勵伽利略公開他的發現:「要對自己有信心啊!如果你是正確的話,或許一些學者會離你遠去,但真相就是最好的證據!」雖然克卜勒沒有馬上收到伽利略的回信,但未來兩人將會一起在不同地方,合作並支持哥白尼的日心說。

《宇宙的秘密》讓克卜勒認識了第谷(左)與伽利略(右)。圖/giphy

此外,也有一本書來到了第谷.布拉赫 (Tycho Brahe) 的手中,雖然第谷不認同克卜勒的觀點,但第谷看出了克卜勒的才華,並認為克卜勒擁有卓越的數學能力,只要擁有少數資料就能夠獨自建立預測模型。

雖然第谷回信稱讚克卜勒的巧妙的推測,但第谷認為哥白尼的觀測資料不太精確,因此第谷邀請克卜勒到自己的天文台工作,希望克卜勒能夠好好善用他更精準的觀測資料。

克卜勒獲得進入到當時一流天文台的機會,開始了他長達 20 幾年的天文研究。

《新天文學》:等面積定律的起源

《新天文學》(Astronomia Nova)在當時是一本與眾不同的天文書籍,它只單一討論一個行星的運動,克卜勒認為只要了解火星的運動,就等於了解其他行星的運動,但克卜勒卻沒有想到,了解單一行星的運動將會是一條崎嶇難行的道路。

克卜勒一直在思考如何將哥白尼的概念帶入到火星的運動上,首先,他根據行星「在近日點較快,在遠日點較慢」的物理現象了設立了距離規則:行星運行速度和行星到太陽的距離是反比關係。

在等面積定律中,太陽與火星的連線,會在相同的時間掃過一樣大的面積。圖/by RJHall , via Wikimedia Commons

克卜勒進一步將所有火星到太陽的距離加總起來,說明這就是火星繞行一周掃過的面積,面積能夠代表著火星走過的時間,克卜勒此時建立了我們今日熟知的第二定律「等面積」概念:相同時間內,行星掃過相同的面積。

《新天文學》什麼?軌道不是圓的!

然而,當克卜勒將自己發現的「新穎物理方法」嘗試應用在偏心圓上時,卻出現了誤差,不過克卜勒心中沒有一絲動搖,他將結果和實際觀測資料比對,推測出火星軌道應該是「非圓」。

真正的軌道比想像中的扁平狹長,克卜勒用肉球來比喻,這就如同從肉球中間擠壓出來的形狀,克卜勒暫稱這個非圓軌跡為「卵形 (oval) 」。

1604 年,克卜勒寫信給自己的朋友,向他抱怨自己已經嘗試了 20 種不同的方法來產生卵形軌跡,卻產生出了和偏心圓相反的誤差。克卜勒推測真正的軌跡就會在圓形和卵形之間,並開始針對這個誤差專研,他認為自己距離真正的軌跡不遠了。

克卜勒行星橢圓模型的刻畫。圖/英譯版《新天文學》內頁

就在克卜勒窮途末路的時候,他突然從誤差中看到了一個常見的數字,一個克卜勒之前在修正火星距離中,曾出現過的數字。

在之前嘗試偏心圓的時,克卜勒發現偏心圓所得到的模型距離和實際觀測值會有誤差,需要經過一個簡單的修正才會符合觀測值,就在此刻他領悟到了這個修正的意義,這就是火星運行的秘密,具有物理意義的「徑向擺盪」,而從當今的數學視角來看,克卜勒的修正就是橢圓在極座標的距離公式: 1+ecosθ

克卜勒是個傑出的數學家,他雖然知道這是橢圓,但他不相信行星的秘密是如此簡單的圓錐曲線,他試圖用其他方法解釋徑向擺盪,但各種方法都沒辦法像橢圓一樣毫無誤差的精準預測。

橢圓定律中:行星沿著自己的橢圓軌道環繞著太陽運轉,而太陽位在橢圓的其中一個焦點的位置。圖/by RJHall, via Wikimedia Commons

1605 年,克卜勒領悟到橢圓本身就能代表行星運行的物理現象,他找到了「橢圓軌跡」的規則:行星以橢圓軌跡繞行太陽,而太陽在其中一個焦點上。

如今,這項橢圓的規則也成為了我們所說的克卜勒第一定律。

但克卜勒工作還沒有完成,他該思考究竟要如何說服當時的其他天文學家,直至 1609 年,克卜勒終於發表了《新天文學》,細心拆解了托勒密和第谷的行星系統,並建立了最精準的橢圓軌跡模型,克卜勒成了世上第一個「摸清行星運動的天文學家」

現在,我們已經知道《宇宙的秘密》、《新天文學》在天文學中的關鍵角色,下一篇文章中,我們將從《世界的和諧》這本書,找到最後一條定律的源頭,完成克卜勒成為星空立法者的最後一哩路……

註解

  1. 克卜勒認為第谷觀測資料的誤差最大到兩角分,而克卜勒用橢圓預測出來的火星位置都是角秒的誤差,由於克卜勒的預測結果都在觀測值的誤差內,基本上能夠說克卜勒的預測幾乎等同於實際觀測。

參考資料

  1. Aiton, E.J. (1969). Kepler’s second Law of Planetary Motion. Isis A Journal of the History of Science Society, 60, 75-90.
  2. Wilson, C. (1968). Kepler’s derivation of the elliptical path. Isis A Journal of the History of Science Society, 59, 5-25
  3. Gingerich, O. (1972). Johannes Kepler and the New Astronomy. Quarterly Journal of the Royal Astronomical Society, 13, 346-373
  4. James, R.V. (1999). Johannes Kepler and the New Astronomy. New York:Oxford University Press
  5. 姚珩、黃瑞秋 (2003)。克卜勒行星橢圓定律的初始內涵。科學教育月刊,第 256 期, 第 33-45 頁。
  6. 姚珩 (2004)。行星面積定律的建立。科學教育月刊,第 257 期,第 32-38 頁。
  7. International LaRouche Youth Movement. (2006). Presentation of Kepler’s Astronomia Nova.
  8. 維基百科:Rudolphine TablesHarmonices MundiJohannes KeplerMusica universalis
Ad manager Post Bottom code
[集雅]廣告測試
活躍星系核
818 篇文章 ・ 1 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

0
0

文字

分享

0
0
0
不只是嶄新的天文儀器,更讓觀測不再受人眼所限:一張畫認識第谷與他的天文台
活躍星系核
・2020/09/04 ・3325字 ・閱讀時間約 6 分鐘 ・SR值 522 ・七年級

TAAi 2020 25th 人工智慧研討會

  • 文/仰望天空的智人│目前為高三自學生,在升上高三的那個暑假,毅然決然走上自學的道路。希望在有限的青春,不要只是僅追求紙上的對錯,而是時時刻刻的詢問世界,「為什麼?」。

上物理課教到克卜勒(Johannes Kepler)的三大定律時,老師特別也介紹了對克卜勒的定律有很大貢獻的 第谷.布拉赫(Tycho Brahe)。

第谷是一位丹麥的貴族,鼻子因為決鬥而失去了一部分,擁有當時資料最多、最精準的天文台。他的助手約翰尼斯.克卜勒(Johannes Kepler)之後會靠著這些資料,成功地發現橢圓行星軌道。可惜第谷去世的早,無緣見證到克卜勒的曠世巨著《新天文學》的出版。

課堂投影片上,老師放了一張畫作,其中第谷用右手指著牆上的小洞。我心中很快地列出了某些想像,認為第谷是一位腦袋內建「量角器」、每天有閒情逸致仰望天空的貴族。

test-2021_Pansci_All_inread_p4

圖/wikimedia

等到我有了機會研究更多有關第谷的資料時,才赫然發現,當初看到的畫作,就已經揭露了第谷在烏蘭尼堡(Uraniborg)的多種精密觀星儀器。

一幅畫帶你認識第谷如何觀星

介紹第谷時,無法忽視這張雕刻畫,裡面有著他一生的研究心血。它出自於第谷在西元 1598 年出版《Astronomiae Instauratae Mechanica》(中譯:新天文學儀器)中的雕刻畫,畫裡清楚地繪畫出第谷的儀器,並隱含了他的觀星技術。

回到稍早的西元 1597 年,第谷因為和新繼位的丹麥國王克里斯蒂安四世(Christian IV)長期的爭執無法解決,最終被迫離開了哥本哈根。第谷帶著儀器,暫時借住到貴族朋友海因里希.蘭卓(Heinrich Rantzau) 的城堡。

test-2021_Pansci_All_inread_p8

在流亡的這一年中,他完成了此書,希望藉此讓國王了解他的貢獻以及放棄他的損失。但丹麥國王並不領情,最後第谷將此書獻給了神聖羅馬帝國魯道夫二世(Rudolf II),並很快地獲得了賞識,第谷因此得以設立新的天文台,進而邀請克卜勒加入。後來沿用多個世紀、精準的「魯道夫星表」(Tabulae Rudolphinae)也是由此為開端建立的。

第谷如何獲得魯道夫二世的青睞?他的書中又提到了哪些觀星的技術呢?我們可以從雕刻畫裡的內容談起。

畫中透露了第谷擁有三種主要的觀星儀器分別為:四分儀(Quadrant)、六分儀(Sextant)、渾天儀(Armillary)。每一種儀器都有各自特殊的用處。

四分儀:建立天體的絕對座標

四分儀,顧名思義,儀器角度為全圓周的四分之一,即 90 度。90度是地平線到天頂的範圍,方便直接從地平線開始量測是所有天體量測的基準。第谷以四分儀建立精準的天體座標。

test-2021_Pansci_All_inread_p12

展示在大英博物館中的四分儀。The Canterbury Astrolabe Quadrant. British Museum, London.圖/wiki commons

在畫作中,佔據最大版面的壁畫四分儀(Mural Quadrant),就是第谷在烏蘭尼堡的主力觀察儀器,長期固定面對著子午線,進行天體座標的測量與修正,半徑 1.94 公尺的龐大身軀上刻滿了細緻的刻度。需要三個人協作,一人看緯度,一人看時間,一人指揮,才能夠完成觀測。此儀器精度可達 10 角秒,遠遠超越人類的裸眼極限。

除了定點觀測外,第谷也設計了另一個室外四分儀,用來觀察太陽相對繞行的位置。此儀器擁有和壁畫四分儀一樣半徑(1.94公尺)的方形設計,它能旋轉到任意方位。特別的是第谷選用鐵材來製作方形四分儀,堪稱所有儀器中的傑作,堅固、輕巧、可移動、同時又兼具驚人的 10 角秒精準度。

六分儀:量測天體間的角度差

常使用於測繪與航海的六分儀。圖/Max Pixel

六分儀,儀器角度為全圓周的六分之一,即 60 度。特別的是它並不是測量物體水平或垂直角度,而是測量物體在天空中的角度差。可以再透過幾何運算與其他測量資訊,來獲得相對天體座標

第谷設計六分儀時,利用 60 度結構與等腰三角形的特性,簡化了許多繁複的幾何運算,並透過經年累月的重複量測,讓這身長 1.55 公尺的龐大儀器精度仍可達 24 角秒。

渾天儀:協助進行座標轉換

渾天儀的模型展示。圖/Balaji CC BY-SA 3.0  File:Armillary sphere.JPG

渾天儀,為一個大型的活動圓形儀器,內部由多個圓環組成天球外框,能夠同時決定黃道面、天球赤道面、子午線以及天極。主要會有兩個環一個代表黃道,一個代表天球赤道,也象徵著自轉和公轉,再加上其他輔助環代表行星、垂直面等等。

在當時因為沒有電腦,因此有兩者的微調需要經過複雜的幾何運算,為了簡化問題,才有了這類型的儀器。渾天儀較為類似輔助儀器,方便占星學家做座標轉換,不像是四分儀或六分儀為直接觀測儀器。

第谷在此儀器上的創新在於,當時的天文學家都是以黃道面當作他們的天體基準面;但第谷認為,從天極得到的緯度要轉換到天球赤道坐標系相當不便,於是他將基準面設定為天球赤道面。如此可以透過模擬地球自轉來簡化觀測儀器的操作,直接同時量測出天體的赤經與赤緯,也因為這樣的設計,讓後人認為第谷是發明望遠鏡赤道儀的天文學家。

渾天儀全部圓環皆以鐵材製作,龐大沉重的結構能夠在天極軸上精準又平衡地旋轉,在當時的製作工藝是相當大的挑戰,第谷設計了獨一無二的軸承,解決了天極軸旋轉的問題。因此,此觀星巨獸直徑達 1.55 公尺,但觀測精度卻可達 1 角分。

天文儀器的改良:刻度小還要再更小

第谷嘗試了多種特殊創新的刻度劃分,包括設計了游標卡尺的前身「Nonius」,但他最終選擇了「橫向刻度」(Transversal Scale)作為每個儀器的標準刻度劃分。

除了圓周刻度劃分外,第谷在圓周兩側的刻度間交錯畫上斜線,並刻上橫向刻度,他巧妙的運用截線定理,讓刻度劃分並不再侷限於圓周上,更能夠藉由儀器的圓周寬度來增加刻度劃分。

舉例來說,第谷的壁畫四分儀,半徑 194 公分,一度的圓周長約有 3.4 公分,劃分成六格,每格長約 0.5 公分,代表 10 角分。0.5 公分的圓周已經無法再劃分到更小,橫向刻度就能夠派上用場了,第谷將四分儀的圓周寬度設計約 13 公分,因此兩側 10 分角刻度間隔的對角線約為 13 公分,再細分 10 格,使得刻度來到 1 角分。

此時每角分間隔 1.3 公分,此間隔足夠讓第谷再劃分 6 格,使得刻度來到 10 角秒,每 10 秒角間隔 0.2 公分,裸眼可以輕鬆識別此間隔,達到裸眼 10 角秒的觀測精度。

排除觀測者造成的誤差

從累積多年觀測經驗中,第谷體悟到:如果觀察者無法精準的觀測星體,再精準的儀器也是徒勞。

當時人們靠著「針孔」來對準目標物,他很快地發現,觀察者無法每次都用單眼將目標物的中心對準在孔洞裡,因此造成了 8 角分的誤差,這對於擁有精度 1 角分儀器的第谷來說,實在是太過荒謬了。

因此他發明了「無視差瞄準器」(Parallax-free Sight),讓觀察者用雙眼通過兩側隙縫,觀察目標物通過前方的圓柱孔,當物體都在左右眼的隙縫裡,這就是完美對準。

無視差瞄準器

不只是嶄新的天文儀器,讓觀測不再受人眼所限

普遍人類裸眼最多只能看到 1 角分,第谷當時最好的四分儀就已經能夠看到 10 角秒的精度了,持續領先當時眾多天文學家 100 年,直到 1660 年代開始發展天文望遠鏡。

第谷是一位相信客觀中立的科學家,嘗試用他超精密的觀星儀器,來探索困擾當時天文學家的誤差。他深信著精準資料給予的結果,而建立了介於地心與日心之間的「第谷模型」,讓克卜勒在這基礎上,更進一步建立了完整的行星軌跡模型。他並且推論,如果地球繞行太陽的話,應該能夠觀察到星星的視差,殊不知星星與地球的距離超乎了當時人類的想像,視差小於 1 角秒,這超過人類肉眼的極限。

但一切都無妨,在第谷之後的 200 年,人類首次測量到天鵝座 61, 313.6 毫角秒的視差。距離地球 10 光年,星星不再是天空中遙不可及的光點,人類會繼續一步一步的了解天空的每個角落。

圖/wikimedia

參考資料

  1. Chapman,A.,1989,Tycho Brahe – Instrument designer, observer and mechanician,J. Br. Astron. Assoc,99(2),70-77
  2. Tycho Brahe,1598, Astronomiae Instauratae Mechanica
Ad manager Post Bottom code
[集雅]廣告測試
活躍星系核
818 篇文章 ・ 1 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia