網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策
test-2021_Pansci_All_Top

0

0
0

文字

分享

0
0
0

既然「最大亂度」是宇宙運行終點,為什麼還要整理房間?

旻諭
・2019/02/01 ・1446字 ・閱讀時間約 3 分鐘 ・SR值 530 ・七年級

TAAi 2020 25th 人工智慧研討會

最近日本收納女王近藤麻理惠和 Netflix 合作的實境節目大受好評,因為麻理惠告訴我們:「只被心動的東西所圍繞,才是你想擁有的理想人生!」因此,整理房間可謂首要之務。

但真的是這樣嗎?根據熱力學第二定律:在一密閉系統中,熵值(或說「亂度」)只會增加不會減少,宇宙的平衡也傾向於「最大亂度」。因此當房間的亂度越來越大,這個宇宙就越來越穩定呢!

柯 P 也曾說過:「最低能量,最大亂度,是宇宙運行的方向。」照這邏輯,我不整理房間,只是順著宇宙運行的方式罷了!

柯 P:「最低能量,最大亂度,是宇宙運行的方向。」圖/截圖自柯文哲 台北市長 │ 臺大演講網影片(在 44:21 講的哦 XD)

不過,有越來越多的研究發現,整理房間與否,可能和身心健康息息相關!

test-2021_Pansci_All_inread_p4

房間亂跟身體健康有關係?拿 30 對夫妻來做實驗!

在 2009 年,由加州大學洛杉磯分校主持的研究團隊,以 30 對中產階級的雙薪家庭為研究對象,發現夫妻間「覺得自己家裡亂不亂」和身體健康狀況有點關係。

如何定義到底「家裡亂不亂」呢?研究團隊請夫妻兩人個別向研究人員介紹他們家的環境,並在過程中偷偷紀錄男方跟女方有哪些 murmur 都用什麼形容詞形容家裡,像是「唉呦我家很亂」、「這裡我還沒整理完」、「我人在家覺得蠻放鬆的」等等。

記錄完男女雙方各自對家裡的描述之後,研究團隊想觀察夫妻倆白天可體松 (cortisol) 濃度的上升幅度,作為夫妻倆身體健康狀況的指標。因此研究人員收集 30 對夫妻在剛睡醒、吃午餐前、正要下班前跟正要去睡覺四個時間的唾液,並計算出每個人白天可體松濃度上升幅度。

覺得房間凌亂與否,白天可體松濃度會有差

一般來說,人每天的可體松濃度變化有一定規律:早上剛睡醒的一個小時內,可體松濃度會巨幅上升,過了早上之後快速下降,到傍晚濃度緩慢降低。這樣的週期濃度變化,是因為可體松能讓身體釋放大量葡萄糖進入血液之中,讓大腦和肌肉信手拈來就有葡萄糖可以用。

test-2021_Pansci_All_inread_p8
從這張圖可以看到,一般人可體松濃度最高的時候,大概在早上八點半。圖/Chan & Miguel, 2010

因此,若可體松濃度在早上剛睡醒的幾個小時內巨幅上升,代表身體已經準備好面對全新的挑戰!相反地,可體松濃度上升幅度平緩,就代表身體狀況不太理想。

而研究結果顯示,覺得自己家裡雜亂的女主人,早上可體松濃度上升幅度比較平緩;反之,覺得自己家很整齊的女主人,可體松濃度上升的幅度就比較大。這個結果說明了,女主人覺得家裡髒亂與否,跟她的身體健康狀況有點關聯性。

那家中男主人也有一樣的反應嗎?研究結果發現,不管是覺得家裡亂還不亂的男主人,剛睡醒幾小時內的可體松濃度就蠻高的了。研究者推測原因可能是,大多時候女性比男性更在意家裡到底亂不亂吧!

期待會整理書桌的哥哥出現?直接捲袖子開整理啦!

雖然這項研究是以中產階級的雙薪夫妻為研究對象,能不能推及所有人還很難說。

test-2021_Pansci_All_inread_p12

不過看完這篇文章的你大概心裡有底,過年爸媽要找你大掃除的時候,如果你沒有會幫你整理書桌還能拍成三集影片的老哥,就還是摸摸鼻子捲起袖子,開始動手整理吧!

圖/截圖自桌子亂中有序的滴妹頻道影片

參考資料:

文章難易度
Ad manager Post Bottom code
[集雅]廣告測試

0

0
0

文字

分享

0
0
0
《天能》與其中可能的物理學:對稱性、熵、馬克士威爾的惡魔
物理雙月刊
・2020/08/25 ・2108字 ・閱讀時間約 4 分鐘 ・SR值 543 ・八年級

TAAi 2020 25th 人工智慧研討會

  • 文/楊仲準

無雷,還沒上映也無從雷起

《天能》宣傳圖。圖/IMDb

克里斯多福諾蘭所執導的幾部電影中,常常使用了許多的科學理論,或者是數學原理,來增加影片的說服力。

例如《全面啟動 (Inception)》裡,大量地使用視覺錯覺、對稱性、與艾雪 (Escher) 錯視藝術來製造迷宮;在《星際效應 (Interstellar)》一片中,則使用了相對論、多維空間、蟲洞、重力場等物理元素貫穿全場;而在即將上映的最新電影──《天能 (TENET)》預告片中,隱約可以再次看出諾蘭導演對於把物理學元素,導入娛樂大片中的可能性。

編按:以下分析內容出自預告片

《全面啟動》中的艾雪階梯。圖/IMDb

《TENET》在片名就呼之欲出的對稱性

對稱性,在物理學中是一種相當重要的概念。當一個物理系統具有對稱性時,便同時會具有一個守恆量。

test-2021_Pansci_All_inread_p4

例如一個系統如果在空間上具有對稱性時,則此一系統也會遵守動量守恆;而系統在時間上具有對稱性時,則系統也同時會遵守能量守恆。

諾蘭導演選擇了 TENET (天能)這個英文字,出處可能來自於龐貝古城遺址中所發現的石板,稱之為薩托方塊 (SATOR SQUARE) 其中寫著如下圖中的字。相同的文字,也出現在義大利、英國、敘利亞、法國等地的教堂中。

法國 Oppede 的薩托方塊。圖/WIKI

這個薩托方塊中出現了 5 組文字:SATOR、AREPO、TENET、OPERA、ROTAS。如果由左上往右下畫出一條直線,則可以發現文字方塊在這條對角線的兩側是呈現對稱的;如果將文字旋轉 180 度,也是可以出現跟原來文字一樣的排列;再者,無論以圖中橫寫或是直寫的 TENET 為轉軸,把文字做鏡射反映的話,可以發現文字就像轉了 90 度一樣,但是那五組文字還是出現在方塊中,只是順序倒過來。

因此諾蘭導演想要玩弄對稱性與翻轉鏡射的用意,可能就呼之欲出了。

test-2021_Pansci_All_inread_p8

熱力學第二定律,限制了時間的方向性

在古典的力學公式中,雖然沒有限制時間與空間能不能反轉,也就是位置可以由 x 變成 -x;時間 t 也可以變成 -t。但是熱力學第二定律的出現,便限制了時間的方向性。由於一個孤立系統的熵只能不變或是增加,因此對於宇宙這一個孤力系統來說,時間上便只有往熵增加的方向演化。使得「時間」這個概念,只能往單一的方向行進。

既然時間是不可逆,那麼諾蘭導演是要玩時空旅行的老梗嗎?在預告片中顯然有了答案。連結的預告片中,1 分 04 秒到 1 分 05 秒處中似乎是否定了使用時空旅行梗的可能性。那麼還有甚麼可能玩的科學梗呢?

暗藏在背景白板上的「馬克士威爾惡魔」。圖/預告片截圖

馬克士威爾的惡魔

在天能的預告片 1 分 08 秒到 1 分 09 秒的短短一秒間,主角的背景白板上,出現了馬克士威爾的惡魔 (Maxwell’s demon) 的圖

這是馬克士威爾提出的一個想像實驗,假設有兩個裝滿相等溫度氣體的箱子,箱子之間透過一個小洞相連。假設有一個惡魔 (demon) 看守在那個相連的閥門旁。當氣體分子飛向那個閥門時,惡魔便會判定氣體分子的速度。他只讓速度較慢,也就是溫度較低的氣體分子進入左邊,而讓速度較快,也就是溫度較高的氣體分子進入右邊箱子。經過很長一段時間後,左邊的箱子內的氣體溫度就會變得比較低,而右邊箱子內的氣體則呈現較高的溫度。

test-2021_Pansci_All_inread_p12

這明顯的違反了熱力學第二定律。因為這樣兩側均為等溫度箱子的總熵,將比一邊是高溫而一邊是低溫氣體的總熵來的大。而自然界總是會往高熵的方向演化(時間前進),熵變小的過程就有如時間倒流。

諾蘭導演或許是想要連結這個想法,就像把墨汁滴到清水中,如果把這個過程錄影並倒著撥放,就會出現黑水變成清水這樣高熵變成低熵的過程。這個「類時間倒流」的想法,也就是物理世界中時間也是可以有對稱性的想法,或許會成為天能本片的中心科學!

《天能》海報。圖/IMDb

諾蘭導演的大篇通常需要看完整片才能知道其中的故事是如何發展連結。因此本文所有的推測都是其中一種可能而已。讓我們期待正片上映後真正的故事發展!也期待多一點這樣有科學依據的影片上映!

 

本文轉載自《物理雙月刊》,原文為〈天能與其中可能的物理學

延伸閱讀

  1. Sator Square Wikipedia
  2. 《天能》預告片
  3. 馬克士威爾惡魔 Wikipedia
  4. 為科學而生 為原子而死的波茲曼(上) 帝國的黃昏 物理雙月刊
  5. 為科學而生 為原子而死的波茲曼(下):飄泊的靈魂 物理雙月刊
Ad manager Post Bottom code
[集雅]廣告測試
物理雙月刊
53 篇文章 ・ 0 位粉絲
《物理雙月刊》為中華民國物理學會旗下之免費物理科普電子雜誌。透過國內物理各領域專家、學者的筆,為我們的讀者帶來許多有趣、重要以及貼近生活的物理知識,並帶領讀者一探這些物理知識的來龍去脈。透過文字、圖片、影片的呈現帶領讀者走進物理的世界,探尋物理之美。《物理雙月刊》努力的首要目標為吸引台灣群眾的閱讀興趣,進而邁向國際化,成為華人世界中重要的物理科普雜誌。

0

0
0

文字

分享

0
0
0
時空洪流中,一些可能有用的旅行資訊── 《我們都是時間旅人》導讀
時報出版
・2019/02/04 ・5757字 ・閱讀時間約 11 分鐘 ・SR值 563 ・九年級

TAAi 2020 25th 人工智慧研討會

  • 卜宏毅(加拿大圓周理論物理研究所博士後研究員)

迷人的時間旅行

我們都是時間旅人?我們已經可以時間旅行了?!我們都對哆啦 A 夢的時光機不陌生,但時間旅行與時間機器的這個想法,原來是在上個世紀英國作家威爾斯(H. G. Wells)的科幻作品中才首次露面。「時間旅行」確實是個引人入勝的概念,光是提到這個名字,每個人心中或許都浮現出自己的故事與畫面,卻又難以道盡:也許是因為我們總不免懷念過去,也許是後悔某些決定,又也許是對充滿未知變數的未來好奇。或多或少,我們也都想像過如果能時間旅行會是什麼樣的場景。

當然無數的小說與電影,例如:《風雲人物》It’s a wonderful life, 1946、《回到未來》Back to the future, 1985/1989/1990、《接觸未來》(Contact, 1997、《救世主》The one, 2001、《蝴蝶效應》The Butterfly Effect, 2004、《真愛每一天》About Time, 2013、《超時空攔截》Predestination, 2014、《星際效應》Interstellar, 2014,都曾在時間旅行的主題上譜出動人的故事,有些故事甚至能使我們更反思當下生活的點滴。這就是時間與時間旅行的魅力,但同時,我們卻常忘記自己其實是會隨著時間流逝而變化、衰老,不由自主地在時間中旅行──屬於我們自己的時間旅行。

電影《回到未來》的時光車。圖/wikipedia

作者葛雷易克用他個人的品味與廣泛探究,綜合歷史、哲學、文學、科學、文化等不同面向來探討時間旅行這個主題。從第一章開始,作者以時間旅行的始祖開頭,接著娓娓道來和時間相關的想法和概念,包括第四維度、未來學、未來主義(第二章)悖論、黑洞、蛀孔、相對論、同時的相對性、光(第三章)、記憶(第四章)、自由意志、宿命論、決定論(第五章)、熱力學、時間箭頭、熵(第六章)、時間之河、量子力學、量子電動力學、薛丁格的貓、多重世界(第七章)、佛教、永恆、幻象(第八章)、時間膠囊(第九章)、蝴蝶效應、多重宇宙(第十章)、因果論、封閉類時曲線、時序保護猜想(第十一章)、量子引力(第十二章)、非自主記憶、精神時間旅行(第十三章),到最後一章(第十四章)作者提到時間是個殺手,時間旅行是躲避死亡的一種手段,並給出活在當下的忠告。

test-2021_Pansci_All_inread_p4

書中隨意的輕重分配比較像是作者在飽覽時間與時間旅行的相關作品和研究後,思緒與心得恣意奔馳的作品──有時是概念的匆匆一瞥以及在不同章節的跳躍出現,有時是突然大量描述引用小說的劇情;作者這樣的安排或許增加了讀者對書中提到的各個領域理解的困難度,但也確實激發讀者對某些從未耳聞的主題或作品有一探究竟的動機。本書像是一次出航,讓不同背景的讀者在不同的章節中找到共鳴而流連(讀者可以看看是否你對時間旅行的聯想也被納入書中,而作者又是用什麼樣的角度去描述)。本書又或是更像一張地圖或是一袋種子,讓讀者的思緒或好奇心在某個午後發芽。

時間與空間的觀念革新

在開始閱讀本書之前,或許以下額外的物理資訊會對你有所幫助:

時間和空間,像是兩個擁有截然不同特性的東西。在日常生活中,我們可以在空間中相對自在地移動,但在時間中我們只能往前。在十七世紀牛頓的時代,人們認為存在著絕對的時間與空間:它們提供了萬事萬物存在互動的舞台。想像一下,在這樣的絕對時間與空間中,有位在地面上的觀察者 A,和相對於 A 在等速運動的火車裡的另一位觀察者 B。如果觀察者 B 丟出一個球,那麼觀察者 A 將會看到這顆球的速度是火車相對於 A 運動的速度加上 B(相對於火車不動)丟球的速度。

然而,到了十九世紀,人們漸漸注意到時間和空間並非獨立運作,他們以一種巧妙的方式一起合作,讓即使是相對運動速度接近光速的兩位觀察者(例如在地面上的觀察者 A,和相對於 A 在一個接近光速且等速運動的火箭裡的另一位觀察者 B),居然量測到的光速都是一樣的!如果你還記得描述速度概念時我們同時運用到了時間空間的概念(例如:火車的速度是每小時一百公里),意味著時間和空間的建構在不同的座標系統(即是兩位觀察者各自存在的座標系統)並不一樣,使得觀察者 A 與 B 能測量到同樣的光速!甚至對觀察者 A 來說,兩個「同時」發生的事件對觀察者 B 來說並非同時(相對論就是指這樣「相對」的概念)。

test-2021_Pansci_All_inread_p8

一九○五年愛因斯坦提出的狹義相對論即是描述與規範了時間和空間(還有質量)的相對性。因為時間和空間的共同合作,時間和空間也一併稱為時空(spacetime):三維空間加一維時間(而不是指把時間當成空間的四維空間描述)。這就是書中隨處可見的第四維度,第一章提到的時空就像是個「塊體」(block)的結構,以及在第四章中特別提到的光和時空的背景故事。

時空是可以彎曲的。圖/JohnsonMartin @pixabay

理解時空的故事還在繼續。狹義相對論雖然有了時空的概念,但在狹義相對論中所討論的時空,是個處處均勻的「平坦」時空。人們接著發現時空可以彎曲,而且物體在彎曲時空中的表現,就等同於重力對物體的影響。同時,物體本身的存在也造成了時空的彎曲。

一九一五年愛因斯坦提出的廣義相對論即是描述上述的時空彎曲與能量(與質量)的關係。而黑洞(在廣義相對論中被理解成一種時空結構)附近的奇怪性質是最經典的一個例子:黑洞的內部被定義成是光都無法往外逃出的區域,而在黑洞外部,空間在黑洞附近會沿著半徑方向被拉長,而越靠近黑洞時間流逝得越快,而且光線還會被彎曲(黑洞內部的時空結構則又更奇怪了)。因此,的確可能利用時間流逝速率的差別來做時間旅行。如果太空船有機會靠近黑洞,待一陣子再離開的話,太空船裡的人經歷的時間會比沒有靠近黑洞的人要慢許多,就等於是到達了那些沒有靠近黑洞的人的未來(電影《星際效應》裡也有這樣的劇情)。書中的第三章與第十一章簡短提到了這樣的想法。

在提出廣義相對論之後約一百年的今天,我們開車導航所仰賴的全球定位系統(Global Positioning System,其原理是接收在高空至少四個人造衛星送出的訊號,再根據時間差來計算在地表上的位置),就必須要考慮在地表的時間流逝比在人造衛星所在高空的時間流逝要慢的相對論效應(就像是在黑洞附近一樣,只是效應要小許多:GPS 需要考慮到 10-9 秒的時間修正),才能做到精準的定位,這些在書中的第二章也曾提到過。

test-2021_Pansci_All_inread_p12
配備 GPS 讓你開車不迷路。圖/pxhere

時間旅行有可能嗎?

探索廣義相對論所允許與預測的時空結構讓人意外連連。時空不但可以彎曲,還可以旋轉、誕生,甚至有些時空能允許觀察者在不超過光速的情況下,在時空中不停「旅行」,最後卻能回到當初出發的時空點(這樣的奇怪宇宙由第十一章提到的哥德爾[Kurt Godel]所發現)。這樣的時空旅行在時空中呈現一個閉合的曲線,也就是在十一章提到的封閉類時曲線(closed timelike curve;這裡的「類時」[timelike]指的是旅行過程中從時空的每一點到下一點都在光速的限制內)。在這理論下允許的時空雖然吸引人,但我們的宇宙似乎沒有這樣的特性。

另外,根據廣義相對論,時空也可能允許形成一種蛀孔(wormhole)的結構(在第三章與第十一章提到),在時空中的兩個地方建立捷徑。讀者不妨把時空想成蘋果表面,而蛀孔就像是在蘋果上蛀的一個洞。蛀孔的時空結構並不穩定,無法穩定存在到真的有生物可以穿越過去。因此我們特別稱呼可以穿越過去的蛀孔稱為可穿越蛀孔。想像某個先進文明可以自由控制著蛀孔兩端的入口,將一端放在黑洞附近,另外一端放在遠處,根據洞口兩端的時間流逝的不同(之前提過的相對論效應),經過一段時間後,就可以建立起一個洞口兩端連接起穿越過去與未來的時間機器。

然而,假如時間機器與時間旅行真的能實現,那又會如何?雖然到達未來的時間旅行在因果關係上比較沒有問題,但如果是回到過去,就會出現一些讓人頭疼的問題。當歷史已經確定,我們有可能回到過去改變歷史嗎?第三章與第十一章提到的祖父悖論,就是時間旅行中經典的問題:如果回到過去殺害自己的祖父(甚至是殺害自己),你還會存在嗎?

的確有些物理學家認真探討過這種問題,大致上有兩種觀點:第一種是無論你怎麼嘗試,絕對無法成功,甚至你回到過去的所作所為就是造成你出發前的歷史。在這種情況下,歷史只有一個,而且因果律被保存下來。這就是時序保護猜想(第十一章)。雖然這樣解決了時間旅行中因果矛盾的問題,但又衍生出另一個問題:如果回到過去的我們沒有辦法做出或完成某些決定,那麼自由意志在哪裡(第五章)?另一種觀點,是你真的有可能成功殺害過去的自己。這種情況下,自由意志被保存下來,卻又產生了因果矛盾。其中一個解套的方法,就是允許有另一個歷史,但是不同的歷史卻各自存在於不同的世界中。這樣的想法源自於下面要提到的量子力學所提供的另一種觀點。

如果你回到過去殺了祖父,那還會有你的存在嗎?如果你不存在,又怎麼能殺了祖父?圖/pxhere

科學家仍然在奮鬥的難題:時空結構可能更複雜

時間再拉回十九世紀,當相對論為時間與空間帶來新的生命時,人們對分子尺度以下的微觀世界的認識也從發現光量子(光的能量不是連續的,而是一個個可以分開數的「光子」;這樣非連續的本質稱為「量子」)誕生的量子力學而徹底改變。量子力學描述的微觀世界是個充滿魔法的世界:系統的狀態只能允許呈現不連續的物理特性,粒子可以穿牆,也能呈現波的性質,而且對粒子的位置測量的越精確,就越不能確定其運動狀態。

在量子的世界中,粒子性質在被測量前呈現隨時間演化的機率分布,直到測量時粒子性質才被確定下來。人們雖然找到描述量子世界中機率隨時間演化的數學描述,卻對這些描述產生不同的理解與詮釋(儘管這些理解不影響數學公式的運作以及對實驗的預測)。其中一種觀點是沒有被觀測到的結果,其實在另一個世界中被觀測到,而那個世界和我們這個世界彼此各自獨立。這就是在第七章和第十二章提到的多世界詮釋(many-worlds interpretation)。

在相對論與量子力學在各自的領域獲得空前成功的同時,狹義相對論與量子力學結合成了一個新的分支,稱為量子場論。量子場論中最先被推導出來的部分是(第六章提到的)描述電磁作用的量子電動力學。量子場論適當地描述了基本粒子與它們之間交互作用,唯獨重力還未能包含在這個大架構之下。時至今日,物理學家還在努力朝這個方向前進,希望由一個更廣泛的理論來概括廣義相對論和量子力學。這個企圖將重力量子化的理論稱做量子引力。合併量子力學和廣義相對論是一個艱難的工作,甚至物理學家們對考慮量子力學後的黑洞表面(廣義相對論中最經典的時空結構之一)的本質,至今過了四十多年還是各有看法,懸而未解。

無論如何,量子引力將能回答諸如「時空在極小的尺度下是否是不連續?怎麼不連續?」的艱難問題,並帶給我們對時空更加深刻的理解。在發展量子引力理論的過程中,對於時間空間的維度有了新的猜測,時空也許不只是相對論中所考慮的四維,而有更多的維度(十維甚至更多!)。這些可能存在的高維度世界也許共存著我們宇宙之外的平行宇宙(parallel universe),在某些狀況下這些平行宇宙也可能互相影響。這些概念與十二章提到平行宇宙的分類其中幾種相關聯(前面提到的多世界詮釋也是平行宇宙的分類之一)。這些「隱藏」的維度是否真的存在或者只是數學上的概念,是物理學界的大哉問。無論如何,在葛雷易克的穿針引線下,讀者將會在一路上隱隱約約看見這些風景。

更高維度是否真的存在或者只是數學上的概念?圖/geralt @pixabay

熱力學定律能指出時間的方向

最後,我們再來認識一個和時間有關的物理領域:熱力學。熱力學是探討溫度(能量的一種形式)、系統與環境的能量轉移的一門科學,從八○年代開始,為了增加蒸汽機效能的了解而發展。在熱力學中有些過程一旦發生是無法回到之前狀態的(例如將一杯水倒入大海中),稱為不可逆過程。了解不可逆過程的一種看法是觀察系統的微觀狀態的統計性質──在各種可能的微觀系統組合中,系統的狀態會趨於最可能出現的狀態。不同的系統狀態根據不同微觀系統組合的可能程度,擁有不同的「」值。

熱力學中的其中一個定律就是,系統的熵值只會保持不變或是變得越大。後者的陳述描述了不可逆過程,也讓時間有了一個能分辨的方向。就像第六章裡提到的,這讓時光旅行的討論變得更加複雜。

「時間」,我們對它為何那麼熟悉又陌生的可能原因之一是,它有太多的名字:很久很久以前、小時候、當初年輕時、長大後、下一世代、未來……。另一個原因是它也有太多的身分:時間是金錢、是沉澱、是養分、是變化、是河、是箭頭,也是通往永恆的起點(也或許是終點)。書中的最後一章,是我最有共鳴的章節。面對永遠,也許在我們的時間旅行中,都有過這樣的時刻:

Millions long for immortality who don’t know what to do with themselves on a rainy Sunday afternoon.(人們渴望永生,卻又不知道在下雨的周日午後要做什麼。)

──英國小說家蘇珊‧艾耳茲(Susan Ertz)

你最喜歡書中的哪個章節?如果你可以時間旅行,你想要做什麼呢?

Ad manager Post Bottom code
[集雅]廣告測試
時報出版
126 篇文章 ・ 0 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。

0

0
0

文字

分享

0
0
0
為什麼光陰似箭不回頭?──《我們都是時間旅人》
時報出版
・2018/10/10 ・3174字 ・閱讀時間約 6 分鐘 ・SR值 591 ・九年級

TAAi 2020 25th 人工智慧研討會

時間最棒的特質就是會繼續前進。但有的時候,物理學家似乎刻意忽視它的這個面向。

──英國天文學家亞瑟.愛丁頓(Arthur Eddington,1882-1944)

光陰似箭:時間最棒的特質就是會繼續前進

俗話說,光陰似箭。很多語言裡都有這個詞(諸如法語是[la flèche du temps]、德語是[Zeitpfeil, zamanın oku]、俄語是[ось времени]),科學家和哲學家都將一個人人都知道,卻又非常複雜的「時間是有方向性」的概念講得很通俗。這個說法在一九四○到五○年代廣為流傳,一開始則是出自亞瑟.愛丁頓(Arthur Eddington)的筆下。

圖/wikipedia

這位英國天體物理學家是第一個起身擁護愛因斯坦的人。一九二七年冬,在愛丁堡大學一系列課程中,愛丁頓試圖理解科學思辨本質中的一項巨變。第二年,他將原先的授課內容集結成書出版,還成為了一本暢銷書《自然界的本質》(The Nature of the Physical World)

讓愛丁頓震驚的是,先前所有的物理學似乎都被當成了古典物理(classical physic),變成另一種新的表達方式。「我不確定『古典物理』一詞是否經過嚴格定義,」他對聽眾這麼說。在某物瓦解崩毀之前,不會有人說它是『古典』。(現在,「古典物理」是一個改造過的新名詞,就像古典吉他、撥號電話還有布製尿布。)

test-2021_Pansci_All_inread_p4

幾千年過去,沒有一個科學家必須特別發明什麼淺顯易懂的表達方式──如「光陰的箭」──來闡述時間最棒的特質就是會繼續前進,這個再明顯不過的情況。然而,現在這已經不再明顯了。物理學家寫下的自然法則讓時間失去方向性,也就是分別在 +t 和 -t 的符號上做個小變化。但有一個自然定律不一樣──熱力學第二定律,這個是跟熵有關的。

圖/maxpixel

「牛頓方程式可向前也可向後,它們不在意往哪個方向,」托瑪西娜解釋道,這是劇作家湯姆.史達帕(Tom Stoppard)在《阿卡迪亞》(Arcadia)中創造的年輕天才。「但是熱力方程式非常在意,它只遵從一個方向。」

朝向無秩序狀態前進的宇宙

宇宙向來都朝無秩序狀態前進,無人可動搖。能量無法毀滅,但它會消散。這不是微觀法則,那麼,是「基礎」法則嗎?例如 F=ma?有些人辯稱說不是。從某個觀點來看,掌管世界各個組成要素的定律──多個單一粒子,或一小群粒子──是第一順位。而量大的定律必須從中分離出來。但對愛丁頓來說,熱力學第二定律就是基礎法則:「在所有自然法則中維持至高無上的位置」。它就是給予我們時間的法則。

在閔考斯基的世界,過去和未來在我們眼前非常清楚,就像東邊和西邊。那兒沒有單行道的標誌,所以愛丁頓增加了一個。「我應該使用『光陰的箭』來表達時間的單一方向特質。空間中是沒有類似情況的。」他從哲學角度切入,提出三個要點:

test-2021_Pansci_All_inread_p8
  1. 可以清楚辨識。
  2. 同時受我們的推論機制支持。
  3. 完全沒有在物理科學中出現,只有在……

只有在我們開始思考秩序與混亂、組織與不可預測性的時候。第二定律不應用在獨立個體上,而是要用於整體效果評估。在一個裝滿氣體的箱中,分子組成一個整體。熵便是用以測量它們不可預測性的東西。如果你將十億氦原子(helium)放進盒子一側,然後將另外十億的氬原子(argon)放到另一側,接著讓它們亂彈亂跳一陣子,它們不會維持俐落分隔的狀態,最終一定會變成一個均勻(但無秩序)的混合體。

你在特定位置找到氦而不是氬原子的可能性,將會是五十比五十。擴散的過程並非一瞬間爆發,而它也只朝一個方向。當你看著兩個元素的分布區域時,過去和未來非常好區分。「一個隨意元素,」愛丁頓說,「會為世界帶來不可挽回性。」如果沒有不可測性,時鐘搞不好就往後轉了。

圖/pexels

熱力學第二定律另解:「生命中的偶然」

「生命中的偶然」是費曼比較喜歡的描述方式。「眼下我們非常清楚,不可逆性是由生命中各種大小意外造成的。」如果你把一杯水丟進海裡,等一段時間,再把杯子撈回來,有辦法拿回同樣一份水嗎?有可能──可能性並非是零,只是微乎其微。十五顆撞球的確可能在桌上橫衝直撞,最後停止變成一個完美的三角形──可是當你看到這件事發生,你就會知道影片被倒轉。第二定律是一個或然性的法則(probabilistic law)。

「混合」(Mixing)是隨光陰之箭流動的進程之一。要將它分離,得花點功夫。「你無法把東西攪成各自分離的狀態,」史達帕筆下的托瑪西娜如此,她用一句話講完熵的概念。(家教塞普蒂繆斯則回答,「當然沒辦法。如果想這麼做,時間就得向後跑,而既然它不可能向後,我們就得持續向前,持續攪動,以無秩序脫出無秩序然後再進入無秩序,直到獲得最佳狀態,再也不會改變、無法改變,然後我們的任務就此完成。」)麥斯威爾則寫道:

test-2021_Pansci_All_inread_p12

這當中是有寓意(Moral)的。熱力學第二定律就等同以下陳述:如果你把一杯水丟進海中,無法再拿回同樣的一杯水。

但麥斯威爾的年代早於愛因斯坦。對他來說,時間不需要什麼正當的理由。他「早就知道」過去必會過去、未來仍然會來,現在可沒有那麼單純。一九四九年,里昂.布里淵(Léon Brillouin)寫了一篇叫做〈人生,熱力學和控制論〉(Life, Thermodynamics and Cybernetics)的論文,其中提出:

時間持續流逝,不會回頭。當物理學家面對這個事實,心中慌亂難以言喻。

對物理學家來說,感覺就像一條橫在微觀法則之間的惱人鴻溝。在那個領域,時間沒有特定方向,因為法則是可以逆轉的。然而在巨觀世界,光陰之箭從過去指向未來。有些人僅此滿足於基礎過程可以逆轉、宏觀過程僅是統計數字的說法。這道鴻溝是斷層──是釋義中的一道間隔。到底該怎麼從一邊跳到另一邊呢?這條鴻溝甚至還有名字呢!光陰之箭兩難理論(arrow of time dilemma),或洛施密特悖論(Loschmidt’s paradox)。

比現在更無秩序更高熵值,就是「未來」

愛因斯坦承認,在他正要領悟世上最偉大理論的瞬間、在他創造廣義相對論(general theory of relativity)的當下,這個問題深深困擾著他──「我解釋不了這件事。」在四維的時空連續體圖表中,我們暫且將P當作位於另外兩個世界點(A 和 B)之間的世界點,「我們來畫一條『就像』『時間』的世界線來穿過P,」愛因斯坦建議道:「給世界線一個箭頭,然後斷定 B 是在 P 之前、A 是在 P之後,這樣是合理的嗎?」只有牽涉到熱力學時才是,他如此結論。

但他同時也說,任何信息的轉移都會牽涉到熱力學。溝通和記憶是熵的過程。「如果能從 B 寄出一個訊號(或拍電報)到 A,而不是從 A 到 B,時間的不均等(非對稱)特質就可確認無疑。換言之,箭頭的方向並不存在所謂自由選擇。這件事情的基本事實就是,寄送訊號在熱力學的概念下是不可逆的。它是一個與熵的增長息息相關的過程。」

圖/pexels

因此,在一開始,宇宙擁有的必定是低熵值。非常非常低。宇宙一定曾經處於非常高秩序的狀態,同時也是一個極度不可能出現的狀態。這是宇宙之謎。自從開天闢地那一刻起,熵值就不斷成長。「這就是走向未來之路。」多年之後,費曼這麼說。此時他已經赫赫有名,並將所有關於物理的知識匯集成教科書。

那是不可逆性的源頭,就是這個東西造成成長與衰敗。它讓我們記得過去,而非未來。它讓我們記得宇宙秩序較高時的近代發生了什麼歷史事件。它解釋了我們為何無法記得比現在更無秩序時發生的一切──我們將那個時期稱為「未來」。

 

本文摘自《我們都是時間旅人:時間機器如何推動科學進展,影響21世紀的人類生活》,時報出版,2018 年 9 月出版。

Ad manager Post Bottom code
[集雅]廣告測試
時報出版
126 篇文章 ・ 0 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。